Test results for the 47 problems in "7.2.2 (dx)^m (a+b arccosh(c x)) ^n.txt"
Problem 13: Unable to integrate problem.

$$
\int \frac{\operatorname{arccosh}(a x)^{4}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 229 leaves, 11 steps):
$-\frac{\operatorname{arccosh}(a x)^{4}}{x}+8 a \operatorname{arccosh}(a x)^{3} \arctan (a x+\sqrt{a x-1} \sqrt{a x+1})-12 \mathrm{I} a \operatorname{arccosh}(a x)^{2} \operatorname{polylog}(2,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))$
$+12 \mathrm{I} a \operatorname{arccosh}(a x)^{2} \operatorname{polylog}(2, \mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))+24 \mathrm{I} a \operatorname{arccosh}(a x) \operatorname{polylog}(3,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))$
$-24 \mathrm{I} a \operatorname{arccosh}(a x) \operatorname{polylog}(3, \mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))-24 \mathrm{I} a \operatorname{polylog}(4,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))+24 \mathrm{I} a \operatorname{polylog}(4, \mathrm{I}(a x$
$+\sqrt{a x-1} \sqrt{a x+1}))$
Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{arccosh}(a x)^{4}}{x^{2}} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{\operatorname{arccosh}(a x)^{4}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 372 leaves, 19 steps):
$\frac{2 a^{2} \operatorname{arccosh}(a x)^{2}}{x}-\frac{\operatorname{arccosh}(a x)^{4}}{3 x^{3}}-8 a^{3} \operatorname{arccosh}(a x) \arctan (a x+\sqrt{a x-1} \sqrt{a x+1})+\frac{4 a^{3} \operatorname{arccosh}(a x)^{3} \arctan (a x+\sqrt{a x-1} \sqrt{a x+1})}{3}$

$$
\begin{aligned}
& +4 \mathrm{I} a^{3} \operatorname{polylog}(2,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))-2 \mathrm{I} a^{3} \operatorname{arccosh}(a x)^{2} \operatorname{polylog}(2,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))-4 \mathrm{I} a^{3} \operatorname{polylog}(2, \mathrm{I}(a x \\
& +\sqrt{a x-1} \sqrt{a x+1}))+2 \mathrm{I} a^{3} \operatorname{arccosh}(a x)^{2} \operatorname{polylog}(2, \mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))+4 \mathrm{I} a^{3} \operatorname{arccosh}(a x) \operatorname{polylog}(3,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1})) \\
& -4 \mathrm{I} a^{3} \operatorname{arccosh}(a x) \operatorname{polylog}(3, \mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))-4 \mathrm{I} a^{3} \operatorname{polylog}(4,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1}))+4 \mathrm{I} a^{3} \operatorname{polylog}(4, \mathrm{I}(a x \\
& +\sqrt{a x-1} \sqrt{a x+1}))+\frac{2 a \operatorname{arccosh}(a x)^{3} \sqrt{a x-1} \sqrt{a x+1}}{3 x^{2}}
\end{aligned}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{arccosh}(a x)^{4}}{x^{4}} \mathrm{~d} x
$$

Problem 24: Unable to integrate problem.

$$
\int x^{2} \operatorname{arccosh}(a x)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 139 leaves, 22 steps):
$\frac{x^{3} \operatorname{arccosh}(a x)^{3 / 2}}{3}-\frac{\operatorname{erf}(\sqrt{3} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{3} \sqrt{\pi}}{288 a^{3}}+\frac{\operatorname{erfi}(\sqrt{3} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{3} \sqrt{\pi}}{288 a^{3}}-\frac{3 \operatorname{erf}(\sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi}}{32 a^{3}}+\frac{3 \operatorname{erfi}(\sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi}}{32 a^{3}}$

$$
-\frac{\sqrt{a x-1} \sqrt{a x+1} \sqrt{\operatorname{arccosh}(a x)}}{3 a^{3}}-\frac{x^{2} \sqrt{a x-1} \sqrt{a x+1} \sqrt{\operatorname{arccosh}(a x)}}{6 a}
$$

Result(type 8, 12 leaves):

$$
\int x^{2} \operatorname{arccosh}(a x)^{3 / 2} \mathrm{~d} x
$$

Problem 26: Unable to integrate problem.

$$
\int \frac{x^{3}}{\sqrt{\operatorname{arccosh}(a x)}} \mathrm{d} x
$$

Optimal(type 4, 79 leaves, 13 steps):

$$
-\frac{\operatorname{erf}(\sqrt{2} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{2} \sqrt{\pi}}{16 a^{4}}+\frac{\operatorname{erfi}(\sqrt{2} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{2} \sqrt{\pi}}{16 a^{4}}-\frac{\operatorname{erf}(2 \sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi}}{32 a^{4}}+\frac{\operatorname{erfi}(2 \sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi}}{32 a^{4}}
$$

Result(type 8, 12 leaves):

$$
\int \frac{x^{3}}{\sqrt{\operatorname{arccosh}(a x)}} \mathrm{d} x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{x^{2}}{\sqrt{\operatorname{arccosh}(a x)}} \mathrm{d} x
$$

Optimal(type 4, 75 leaves, 13 steps):

$$
-\frac{\operatorname{erf}(\sqrt{3} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{3} \sqrt{\pi}}{24 a^{3}}+\frac{\operatorname{erfi}(\sqrt{3} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{3} \sqrt{\pi}}{24 a^{3}}-\frac{\operatorname{erf}(\sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi}}{8 a^{3}}+\frac{\operatorname{erfi}(\sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi}}{8 a^{3}}
$$

Result(type 8, 12 leaves):

$$
\int \frac{x^{2}}{\sqrt{\operatorname{arccosh}(a x)}} d x
$$

Problem 32: Unable to integrate problem.

$$
\int x^{m} \operatorname{arccosh}(a x)^{2} \mathrm{~d} x
$$

Optimal(type 5, 132 leaves, 2 steps):
$\frac{x^{1+m} \operatorname{arccosh}(a x)^{2}}{1+m}-\frac{2 a^{2} x^{3+m} \text { HypergeometricPFQ }\left(\left[1, \frac{3}{2}+\frac{m}{2}, \frac{3}{2}+\frac{m}{2}\right],\left[2+\frac{m}{2}, \frac{5}{2}+\frac{m}{2}\right], a^{2} x^{2}\right)}{m^{3}+6 m^{2}+11 m+6}$
$-2 a x^{2}+m \operatorname{arccosh}(a x)$ hypergeom $\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], a^{2} x^{2}\right) \sqrt{-a x+1}$

$$
\left(m^{2}+3 m+2\right) \sqrt{a x-1}
$$

Result(type 8, 12 leaves):

$$
\int x^{m} \operatorname{arccosh}(a x)^{2} \mathrm{~d} x
$$

Problem 33: Unable to integrate problem.

$$
\int x^{m} \operatorname{arccosh}(a x) \mathrm{d} x
$$

Optimal(type 5, 81 leaves, 4 steps):

$$
\frac{x^{1+m} \operatorname{arccosh}(a x)}{1+m}-\frac{a x^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], a^{2} x^{2}\right) \sqrt{-a^{2} x^{2}+1}}{\left(m^{2}+3 m+2\right) \sqrt{a x-1} \sqrt{a x+1}}
$$

Result(type 8, 10 leaves):

$$
\int x^{m} \operatorname{arccosh}(a x) \mathrm{d} x
$$

Problem 39: Result unnecessarily involves higher level functions.

$$
\int \operatorname{arccosh}(a x)^{n} \mathrm{~d} x
$$

Optimal(type 4, 45 leaves, 4 steps):

$$
\frac{\operatorname{arccosh}(a x)^{n} \Gamma(1+n,-\operatorname{arccosh}(a x))}{2 a(-\operatorname{arccosh}(a x))^{n}}+\frac{\Gamma(1+n, \operatorname{arccosh}(a x))}{2 a}
$$

Result(type 5, 39 leaves):

$$
\frac{\operatorname{arccosh}(a x)^{2+n} \text { hypergeom }\left(\left[1+\frac{n}{2}\right],\left[\frac{3}{2}, 2+\frac{n}{2}\right], \frac{\operatorname{arccosh}(a x)^{2}}{4}\right)}{a(2+n)}
$$

Problem 41: Unable to integrate problem.

$$
\int x^{2} \sqrt{a+b \operatorname{arccosh}(c x)} \mathrm{d} x
$$

Optimal(type 4, 162 leaves, 14 steps):

$$
-\frac{\operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{b} \sqrt{\pi}}{16 c^{3} \mathrm{e}^{\frac{a}{b}}}+\frac{x^{3} \sqrt{a+b \operatorname{arccosh}(c x)}}{3}
$$

Result(type 8, 16 leaves):

$$
\int x^{2} \sqrt{a+b \operatorname{arccosh}(c x)} \mathrm{d} x
$$

Problem 42: Unable to integrate problem.

$$
\int(a+b \operatorname{arccosh}(c x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 109 leaves, 8 steps):
$x(a+b \operatorname{arccosh}(c x))^{3 / 2}-\frac{3 b^{3 / 2} \mathrm{e}^{\frac{a}{b}} \operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{\pi}}{8 c}+\frac{3 b^{3 / 2} \operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{\pi}}{8 c \mathrm{e}^{\frac{a}{b}}}$

$$
-\frac{3 b \sqrt{c x-1} \sqrt{c x+1} \sqrt{a+b \operatorname{arccosh}(c x)}}{2 c}
$$

Result(type 8, 12 leaves):

$$
\int(a+b \operatorname{arccosh}(c x))^{3 / 2} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int x^{2}(a+b \operatorname{arccosh}(c x))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 262 leaves, 24 steps):
$\frac{x^{3}(a+b \operatorname{arccosh}(c x))^{5 / 2}}{3}-\frac{5 b^{5 / 2} \mathrm{e}^{\frac{3 a}{b}} \operatorname{erf}\left(\frac{\sqrt{3} \sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{3} \sqrt{\pi}}{1728 c^{3}}-\frac{5 b^{5 / 2} \operatorname{erfi}\left(\frac{\sqrt{3} \sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{3} \sqrt{\pi}}{1728 c^{3} \mathrm{e}^{\frac{3 a}{b}}}$

$$
-\frac{15 b^{5 / 2} \mathrm{e}^{\frac{a}{b}} \operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{\pi}}{64 c^{3}}-\frac{15 b^{5 / 2} \operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{\pi}}{64 c^{3} \mathrm{e}^{\frac{a}{b}}}-\frac{5 b(a+b \operatorname{arccosh}(c x))^{3 / 2} \sqrt{c x-1} \sqrt{c x+1}}{9 c^{3}}
$$

$$
-\frac{5 b x^{2}(a+b \operatorname{arccosh}(c x))^{3 / 2} \sqrt{c x-1} \sqrt{c x+1}}{18 c}+\frac{5 b^{2} x \sqrt{a+b \operatorname{arccosh}(c x)}}{6 c^{2}}+\frac{5 b^{2} x^{3} \sqrt{a+b \operatorname{arccosh}(c x)}}{36}
$$

Result(type 8, 16 leaves):

$$
\int x^{2}(a+b \operatorname{arccosh}(c x))^{5 / 2} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{x}{\sqrt{a+b \operatorname{arccosh}(c x)}} \mathrm{d} x
$$

Optimal(type 4, 81 leaves, 8 steps):

$$
-\frac{\mathrm{e}^{\frac{2 a}{b}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{2} \sqrt{\pi}}{8 c^{2} \sqrt{b}}+\frac{\operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{2} \sqrt{\pi}}{8 c^{2} \mathrm{e}^{\frac{2 a}{b}} \sqrt{b}}
$$

Result(type 8, 14 leaves):

$$
\int \frac{x}{\sqrt{a+b \operatorname{arccosh}(c x)}} \mathrm{d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{x}{(a+b \operatorname{arccosh}(c x))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 114 leaves, 6 steps):

$$
\frac{\mathrm{e}^{\frac{2 a}{b}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh(cx)}}) \sqrt{2} \sqrt{\pi}}{\sqrt{b}}+\frac{\operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh(cx)}}) \sqrt{2} \sqrt{\pi}}{\sqrt{b}}\right.}{2 b^{3 / 2} c^{2}}-\frac{2 x \sqrt{c x-1} \sqrt{c x+1}}{b c \sqrt{a+b \operatorname{arccosh}(c x)}}\right.}{2 b^{3} / 2 c^{2} \mathrm{e}^{\frac{2 a}{b}}}
$$

Result(type 8, 14 leaves):

$$
\int \frac{x}{(a+b \operatorname{arccosh}(c x))^{3 / 2}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{1}{(a+b \operatorname{arccosh}(c x))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 97 leaves, 7 steps):

Result(type 8, 12 leaves):

$$
\int \frac{1}{(a+b \operatorname{arccosh}(c x))^{3 / 2}} \mathrm{~d} x
$$

Problem 47: Unable to integrate problem.

$$
\int(d x)^{m}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Optimal(type 5, 96 leaves, 4 steps):

$$
\frac{(d x)^{1+m}(a+b \operatorname{arccosh}(c x))}{d(1+m)}-\frac{b c(d x)^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}{d^{2}(1+m)(2+m) \sqrt{c x-1} \sqrt{c x+1}}
$$

Result(type 8, 16 leaves):

$$
\int(d x)^{m}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Test results for the 153 problems in "7.2.4 (f $x)^{\wedge} m\left(d+e x^{\wedge}\right)^{\wedge} p(a+b \operatorname{arccosh}(c x))^{\wedge} n . t x t "$
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{x^{3}\left(-c^{2} d x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 148 leaves, 9 steps):
$\frac{-a-b \operatorname{arccosh}(c x)}{2 d x^{2}}+\frac{2 c^{2}(a+b \operatorname{arccosh}(c x)) \operatorname{arctanh}\left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right)}{d}+\frac{b c^{2} \operatorname{polylog}\left(2,-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right)}{2 d}$

$$
-\frac{b c^{2} \operatorname{polylog}\left(2,(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right)}{2 d}+\frac{b c \sqrt{c x-1} \sqrt{c x+1}}{2 d x}
$$

Result(type 4, 300 leaves):
$-\frac{a}{2 d x^{2}}+\frac{c^{2} a \ln (c x)}{d}-\frac{c^{2} a \ln (c x+1)}{2 d}-\frac{c^{2} a \ln (c x-1)}{2 d}+\frac{b c \sqrt{c x-1} \sqrt{c x+1}}{2 d x}-\frac{b c^{2}}{2 d}-\frac{b \operatorname{arccosh}(c x)}{2 d x^{2}}$

$$
\begin{aligned}
& -\frac{c^{2} b \operatorname{arccosh}(c x) \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{d}-\frac{c^{2} b \operatorname{polylog}(2,-c x-\sqrt{c x-1} \sqrt{c x+1})}{d} \\
& -\frac{c^{2} b \operatorname{arccosh}(c x) \ln (1-c x-\sqrt{c x-1} \sqrt{c x+1})}{d}-\frac{c^{2} b \operatorname{polylog}(2, c x+\sqrt{c x-1} \sqrt{c x+1})}{d} \\
& +\frac{c^{2} b \operatorname{arccosh}(c x) \ln \left(1+(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right)}{d}+\frac{b c^{2} \operatorname{polylog}\left(2,-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right)}{2 d}
\end{aligned}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int x^{2}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 169 leaves, 5 steps):

$$
-\frac{x(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{8 c^{2}}+\frac{x^{3}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{4}+\frac{b x^{2} \sqrt{-c^{2} d x^{2}+d}}{16 c \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c x^{4} \sqrt{-c^{2} d x^{2}+d}}{16 \sqrt{c x-1} \sqrt{c x+1}}
$$

$$
-\frac{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{16 b c^{3} \sqrt{c x-1} \sqrt{c x+1}}
$$

Result(type 3, 345 leaves):

$$
\begin{aligned}
& -\frac{a x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{4 c^{2} d}+\frac{a x \sqrt{-c^{2} d x^{2}+d}}{8 c^{2}}+\frac{a d \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{8 c^{2} \sqrt{c^{2} d}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2}}{16 \sqrt{c x-1} \sqrt{c x+1} c^{3}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)}-c x^{4}}{16 \sqrt{c x+1} \sqrt{c x-1}} \\
& \quad+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2}}{16 \sqrt{c x+1} c \sqrt{c x-1}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{2} \operatorname{arccosh(cx)x^{5}}}{4(c x+1)(c x-1)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{3}}{8(c x+1)(c x-1)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x}{8(c x+1) c^{2}(c x-1)} \\
& \quad-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)}}{128 \sqrt{c x+1} c^{3} \sqrt{c x-1}}
\end{aligned}
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{x^{8}} \mathrm{~d} x
$$

Optimal(type 3, 235 leaves, 4 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{7 d x^{7}}-\frac{4 c^{2}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{35 d x^{5}}-\frac{8 c^{4}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{105 d x^{3}} \\
& -\frac{b c \sqrt{-c^{2} d x^{2}+d}}{42 x^{6} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{3} \sqrt{-c^{2} d x^{2}+d}}{140 x^{4} \sqrt{c x-1} \sqrt{c x+1}}+\frac{2 b c^{5} \sqrt{-c^{2} d x^{2}+d}}{105 x^{2} \sqrt{c x-1} \sqrt{c x+1}}-\frac{8 b c^{7} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{105 \sqrt{c x-1} \sqrt{c x+1}}
\end{aligned}
$$

Result(type ?, 2533 leaves): Display of huge result suppressed!
Problem 21: Result more than twice size of optimal antiderivative.

$$
\int x^{5}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 228 leaves, 3 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{3 c^{6} d}+\frac{2\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{5 c^{6} d^{2}}-\frac{\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \operatorname{arccosh}(c x))}{7 c^{6} d^{3}} \\
& \quad+\frac{8 b x \sqrt{-c^{2} d x^{2}+d}}{105 c^{5} \sqrt{c x-1} \sqrt{c x+1}}+\frac{4 b x^{3} \sqrt{-c^{2} d x^{2}+d}}{315 c^{3} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b x^{5} \sqrt{-c^{2} d x^{2}+d}}{175 c \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c x^{7} \sqrt{-c^{2} d x^{2}+d}}{49 \sqrt{c x-1} \sqrt{c x+1}}
\end{aligned}
$$

Result(type 3, 987 leaves):
$a\left(-\frac{x^{4}\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{7 c^{2} d}+\frac{4\left(-\frac{x^{2}\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{5 c^{2} d}-\frac{2\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{15 d c^{4}}\right)}{7 c^{2}}\right)+b\left(\frac{1}{6272(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(64 c^{8} x^{8}-144 c^{6} x^{6}\right.\right.\right.$

$$
\left.+64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+104 c^{4} x^{4}-112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-25 c^{2} x^{2}+56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-7 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1
$$

$$
+7 \operatorname{arccosh}(c x)))+\frac{1}{3200(c x+1) c^{6}(c x-1)}\left(3 \sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+13 c^{2} x^{2}\right.\right.
$$

$$
\left.\left.-20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+5 \sqrt{c x-1} \sqrt{c x+1} x c-1\right)(-1+5 \operatorname{arccosh}(c x))\right)
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}+4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-3 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1+3 \operatorname{arccosh}(c x))}{1152(c x+1) c^{6}(c x-1)}
$$

$$
-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)-1)}{128(c x+1) c^{6}(c x-1)}
$$

$$
-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)+1)}{128(c x+1) c^{6}(c x-1)}
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+4 c^{4} x^{4}+3 \sqrt{c x-1} \sqrt{c x+1} x c-5 c^{2} x^{2}+1\right)(1+3 \operatorname{arccosh}(c x))}{1152(c x+1) c^{6}(c x-1)}
$$

$$
+\frac{1}{3200(c x+1) c^{6}(c x-1)}\left(3 \sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+16 c^{6} x^{6}+20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-28 c^{4} x^{4}\right.\right.
$$

$$
\left.\left.-5 \sqrt{c x-1} \sqrt{c x+1} x c+13 c^{2} x^{2}-1\right)(1+5 \operatorname{arccosh}(c x))\right)+\frac{1}{6272(c x+1) c^{6}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}\right.\right.
$$

$$
\left.+64 c^{8} x^{8}+112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-144 c^{6} x^{6}-56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+104 c^{4} x^{4}+7 \sqrt{c x-1} \sqrt{c x+1} x c-25 c^{2} x^{2}+1\right)(1
$$

$$
+7 \operatorname{arccosh}(c x))))
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int x^{3}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 163 leaves, 3 steps):

$$
-\frac{\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{3 c^{4} d}+\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{5 c^{4} d^{2}}+\frac{2 b x \sqrt{-c^{2} d x^{2}+d}}{15 c^{3} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b x^{3} \sqrt{-c^{2} d x^{2}+d}}{45 c \sqrt{c x-1} \sqrt{c x+1}}
$$

$$
-\frac{b c x^{5} \sqrt{-c^{2} d x^{2}+d}}{25 \sqrt{c x-1} \sqrt{c x+1}}
$$

Result (type 3, 639 leaves):

$$
a\left(-\frac{x^{2}\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{5 c^{2} d}-\frac{2\left(-c^{2} d x^{2}+d\right)^{3 / 2}}{15 d c^{4}}\right)+b\left(\frac { 1 } { 8 0 0 (c x + 1) c ^ { 4 } (c x - 1) } \left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}\right.\right.\right.
$$

$$
\left.\left.+13 c^{2} x^{2}-20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+5 \sqrt{c x-1} \sqrt{c x+1} x c-1\right)(-1+5 \operatorname{arccosh}(c x))\right)
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}+4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-3 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1+3 \operatorname{arccosh}(c x))}{288(c x+1) c^{4}(c x-1)}
$$

$$
-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)-1)}{16(c x+1) c^{4}(c x-1)}
$$

$$
-\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)+1)}{16(c x+1) c^{4}(c x-1)}
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+4 c^{4} x^{4}+3 \sqrt{c x-1} \sqrt{c x+1} x c-5 c^{2} x^{2}+1\right)(1+3 \operatorname{arccosh}(c x))}{288(c x+1) c^{4}(c x-1)}
$$

$$
+\frac{1}{800(c x+1) c^{4}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+16 c^{6} x^{6}+20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-28 c^{4} x^{4}-5 \sqrt{c x-1} \sqrt{c x+1} x c\right.\right.
$$

$$
\left.\left.\left.+13 c^{2} x^{2}-1\right)(1+5 \operatorname{arccosh}(c x))\right)\right)
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int x^{7}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Optimal (type 3, 335 leaves, 4 steps):
$-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{5 c^{8} d}+\frac{3\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \operatorname{arccosh}(c x))}{7 c^{8} d^{2}}-\frac{\left(-c^{2} d x^{2}+d\right)^{9 / 2}(a+b \operatorname{arccosh}(c x))}{3 c^{8} d^{3}}$
$+\frac{\left(-c^{2} d x^{2}+d\right)^{11 / 2}(a+b \operatorname{arccosh}(c x))}{11 c^{8} d^{4}}+\frac{16 b d x \sqrt{-c^{2} d x^{2}+d}}{1155 c^{7} \sqrt{c x-1} \sqrt{c x+1}}+\frac{8 b d x^{3} \sqrt{-c^{2} d x^{2}+d}}{3465 c^{5} \sqrt{c x-1} \sqrt{c x+1}}+\frac{2 b d x^{5} \sqrt{-c^{2} d x^{2}+d}}{1925 c^{3} \sqrt{c x-1} \sqrt{c x+1}}$
$+\frac{b d x^{7} \sqrt{-c^{2} d x^{2}+d}}{1617 c \sqrt{c x-1} \sqrt{c x+1}}-\frac{4 b c d x^{9} \sqrt{-c^{2} d x^{2}+d}}{297 \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{3} d x^{11} \sqrt{-c^{2} d x^{2}+d}}{121 \sqrt{c x-1} \sqrt{c x+1}}$
Result (type 3, 1845 leaves):

$$
a\left(-\frac{x^{6}\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{11 c^{2} d}+\frac{6\left(-\frac{x^{4}\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{9 c^{2} d}+\frac{4\left(-\frac{x^{2}\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{7 c^{2} d}-\frac{2\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{35 d c^{4}}\right)}{11 c^{2}}\right)}{9 c^{2}}\right)+b(
$$

$$
-\frac{1}{247808(c x+1) c^{8}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(1-61 c^{2} x^{2}-2352 c^{6} x^{6}+620 c^{4} x^{4}+4096 c^{8} x^{8}+1024 x^{12} c^{12}-3328 x^{10} c^{10}\right.\right.
$$

$$
+1024 \sqrt{c x+1} \sqrt{c x-1} x^{11} c^{11}-2816 \sqrt{c x+1} \sqrt{c x-1} x^{9} c^{9}+2816 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}-1232 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}
$$

$$
\left.\left.+220 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-11 \sqrt{c x-1} \sqrt{c x+1} x c\right)(-1+11 \operatorname{arccosh}(c x)) d\right)-\frac{1}{55296(c x+1) c^{8}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(256 x^{10} c^{10}\right.\right.
$$

$$
-704 c^{8} x^{8}+256 \sqrt{c x+1} \sqrt{c x-1} x^{9} c^{9}+688 c^{6} x^{6}-576 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}-280 c^{4} x^{4}+432 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+41 c^{2} x^{2}
$$

$\left.\left.-120 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+9 \sqrt{c x-1} \sqrt{c x+1} x c-1\right)(-1+9 \operatorname{arccosh}(c x)) d\right)+\frac{1}{100352(c x+1) c^{8}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(64 c^{8} x^{8}\right.\right.$
$\left.-144 c^{6} x^{6}+64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+104 c^{4} x^{4}-112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-25 c^{2} x^{2}+56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-7 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)$
$(-1+7 \operatorname{arccosh}(c x)) d)+\frac{1}{51200(c x+1) c^{8}(c x-1)}\left(11 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+13 c^{2} x^{2}\right.\right.$
$\left.\left.-20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+5 \sqrt{c x-1} \sqrt{c x+1} x c-1\right)(-1+5 \operatorname{arccosh}(c x)) d\right)$
$+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}+4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-3 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1+3 \operatorname{arccosh}(c x)) d}{3072(c x+1) c^{8}(c x-1)}$
$-\frac{7 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)-1) d}{1024(c x+1) c^{8}(c x-1)}$
$-\frac{7 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)+1) d}{1024(c x+1) c^{8}(c x-1)}$

$$
\begin{aligned}
& +\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+4 c^{4} x^{4}+3 \sqrt{c x-1} \sqrt{c x+1} x c-5 c^{2} x^{2}+1\right)(1+3 \operatorname{arccosh}(c x)) d}{3072(c x+1) c^{8}(c x-1)} \\
& +\frac{1}{51200(c x+1) c^{8}(c x-1)}\left(1 1 \sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+16 c^{6} x^{6}+20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-28 c^{4} x^{4}\right.\right. \\
& \left.\left.-5 \sqrt{c x-1} \sqrt{c x+1} x c+13 c^{2} x^{2}-1\right)(1+5 \operatorname{arccosh}(c x)) d\right)+\frac{1}{100352(c x+1) c^{8}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}\right.\right. \\
& \left.+64 c^{8} x^{8}+112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-144 c^{6} x^{6}-56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+104 c^{4} x^{4}+7 \sqrt{c x-1} \sqrt{c x+1} x c-25 c^{2} x^{2}+1\right)(1 \\
& +7 \operatorname{arccosh}(c x)) d)-\frac{1}{55296(c x+1) c^{8}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-256 \sqrt{c x+1} \sqrt{c x-1} x^{9} c^{9}+256 x^{10} c^{10}+576 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}\right.\right. \\
& \left.-704 c^{8} x^{8}-432 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+688 c^{6} x^{6}+120 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-280 c^{4} x^{4}-9 \sqrt{c x-1} \sqrt{c x+1} x c+41 c^{2} x^{2}-1\right)(1 \\
& +9 \operatorname{arccosh}(c x)) d)-\frac{1}{247808(c x+1) c^{8}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-1024 \sqrt{c x+1} \sqrt{c x-1} x^{11} c^{11}+1024 x^{12} c^{12}\right.\right. \\
& +2816 \sqrt{c x+1} \sqrt{c x-1} x^{9} c^{9}-3328 x^{10} c^{10}-2816 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+4096 c^{8} x^{8}+1232 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-2352 c^{6} x^{6} \\
& \left.\left.\left.-220 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+620 c^{4} x^{4}+11 \sqrt{c x-1} \sqrt{c x+1} x c-61 c^{2} x^{2}+1\right)(1+11 \operatorname{arccosh}(c x)) d\right)\right)
\end{aligned}
$$

Problem 25: Result more than twice size of optimal antiderivative.
$\int x^{5}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x$
Optimal(type 3, 269 leaves, 4 steps):
$-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{5 c^{6} d}+\frac{2\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \operatorname{arccosh}(c x))}{7 c^{6} d^{2}}-\frac{\left(-c^{2} d x^{2}+d\right)^{9 / 2}(a+b \operatorname{arccosh}(c x))}{9 c^{6} d^{3}}$
$\quad+\frac{8 b d x \sqrt{-c^{2} d x^{2}+d}}{315 c^{5} \sqrt{c x-1} \sqrt{c x+1}}+\frac{4 b d x^{3} \sqrt{-c^{2} d x^{2}+d}}{945 c^{3} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b d x^{5} \sqrt{-c^{2} d x^{2}+d}}{525 c \sqrt{c x-1} \sqrt{c x+1}}-\frac{10 b c d x^{7} \sqrt{-c^{2} d x^{2}+d}}{441 \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{3} d x^{9} \sqrt{-c^{2} d x^{2}+d}}{81 \sqrt{c x-1} \sqrt{c x+1}}$ Result(type 3, 1375 leaves):
$a\left(-\frac{x^{4}\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{9 c^{2} d}+\frac{4\left(-\frac{x^{2}\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{7 c^{2} d}-\frac{2\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{35 d c^{4}}\right)}{9 c^{2}}\right)+b\left(-\frac{1}{41472(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(256 x^{10} c^{10}\right.\right.\right.$
$-704 c^{8} x^{8}+256 \sqrt{c x+1} \sqrt{c x-1} x^{9} c^{9}+688 c^{6} x^{6}-576 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}-280 c^{4} x^{4}+432 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+41 c^{2} x^{2}$
$\left.\left.-120 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+9 \sqrt{c x-1} \sqrt{c x+1} x c-1\right)(-1+9 \operatorname{arccosh}(c x)) d\right)-\frac{1}{25088(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(64 c^{8} x^{8}\right.\right.$

```
\(\left.-144 c^{6} x^{6}+64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+104 c^{4} x^{4}-112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-25 c^{2} x^{2}+56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-7 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)\)
\((-1+7 \operatorname{arccosh}(c x)) d)+\frac{1}{3200(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+13 c^{2} x^{2}\right.\right.\)
\(\left.\left.-20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+5 \sqrt{c x-1} \sqrt{c x+1} x c-1\right)(-1+5 \operatorname{arccosh}(c x)) d\right)\)
\(+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}+4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-3 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1+3 \operatorname{arccosh}(c x)) d}{1152(c x+1) c^{6}(c x-1)}\)
\(-\frac{3 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)-1) d}{256(c x+1) c^{6}(c x-1)}\)
\(-\frac{3 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)+1) d}{256(c x+1) c^{6}(c x-1)}\)
\(+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+4 c^{4} x^{4}+3 \sqrt{c x-1} \sqrt{c x+1} x c-5 c^{2} x^{2}+1\right)(1+3 \operatorname{arccosh}(c x)) d}{1152(c x+1) c^{6}(c x-1)}\)
\(+\frac{1}{3200(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+16 c^{6} x^{6}+20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-28 c^{4} x^{4}-5 \sqrt{c x-1} \sqrt{c x+1} x c\right.\right.\)
\(\left.\left.+13 c^{2} x^{2}-1\right)(1+5 \operatorname{arccosh}(c x)) d\right)-\frac{1}{25088(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+64 c^{8} x^{8}\right.\right.\)
\(\left.\left.+112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-144 c^{6} x^{6}-56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+104 c^{4} x^{4}+7 \sqrt{c x-1} \sqrt{c x+1} x c-25 c^{2} x^{2}+1\right)(1+7 \operatorname{arccosh}(c x)) d\right)\)
\(-\frac{1}{41472(c x+1) c^{6}(c x-1)}\left(\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-256 \sqrt{c x+1} \sqrt{c x-1} x^{9} c^{9}+256 x^{10} c^{10}+576 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}-704 c^{8} x^{8}\right.\right.\)
\(\left.\left.\left.-432 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+688 c^{6} x^{6}+120 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-280 c^{4} x^{4}-9 \sqrt{c x-1} \sqrt{c x+1} x c+41 c^{2} x^{2}-1\right)(1+9 \operatorname{arccosh}(c x)) d\right)\right)\)
```

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{x^{4}} d x
$$

Optimal(type 3, 249 leaves, 12 steps):
$\frac{5 c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{3 x}-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{3 x^{3}}+\frac{5 c^{4} d^{2} x(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{2}$

$$
-\frac{b c d^{2} \sqrt{-c^{2} d x^{2}+d}}{6 x^{2} \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c^{5} d^{2} x^{2} \sqrt{-c^{2} d x^{2}+d}}{4 \sqrt{c x-1} \sqrt{c x+1}}-\frac{5 c^{3} d^{2}(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{4 b \sqrt{c x-1} \sqrt{c x+1}}-\frac{7 b c^{3} d^{2} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{3 \sqrt{c x-1} \sqrt{c x+1}}
$$

Result(type 3, 1406 leaves):

$$
\frac{4 a c^{2}\left(-c^{2} d x^{2}+d\right)^{7 / 2}}{3 d x}-\frac{21 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{2} c^{5}}{2\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}+\frac{5 a c^{4}\left(-c^{2} d x^{2}+d\right)^{3 / 2} x d}{3}+\frac{5 a c^{4} d^{2} x \sqrt{-c^{2} d x^{2}+d}}{2}
$$

$$
+\frac{5 a c^{4} d^{3} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 \sqrt{c^{2} d}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{6} d^{2} \operatorname{arccosh}(c x) x^{3}}{2(c x-1)(c x+1)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{4} d^{2} \operatorname{arccosh}(c x) x}{2(c x-1)(c x+1)}
$$

$$
+\frac{49 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{5} c^{8}}{6\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1)(c x+1)}-\frac{28 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{3} c^{6}}{3\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1)(c x+1)}+\frac{7 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x c^{4}}{6\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1)(c x+1)}
$$

$$
+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \operatorname{arccosh}(c x)}{3\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1) x^{3}(c x+1)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} c}{6\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right) \sqrt{c x-1} x^{2} \sqrt{c x+1}}-\frac{7 b \sqrt{-d\left(c^{2} x^{2}-1\right)}}{3\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right) \sqrt{c x}-1} \sqrt{c x+1}
$$

$$
-\frac{23 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} \operatorname{arccosh}(c x) c^{2}}{3\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1) x(c x+1)}+\frac{147 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{5} \operatorname{arccosh}(c x) c^{8}}{\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1)(c x+1)}-\frac{203 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{3} \operatorname{arccosh}(c x) c^{6}}{\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1)(c x+1)}
$$

$$
+\frac{190 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x \operatorname{arccosh}(c x) c^{4}}{3\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)(c x-1)(c x+1)}+\frac{35 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{2} \operatorname{arccosh}(c x) c^{5}}{\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}-\frac{147 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{4} \operatorname{arccosh}(c x) c^{7}}{\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}
$$

$$
-\frac{7 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \ln \left(1+(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) c^{3} d^{2}}{3 \sqrt{c x-1} \sqrt{c x+1}}+\frac{14 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) c^{3} d^{2}}{3 \sqrt{c x-1} \sqrt{c x+1}}-\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2} c^{3} d^{2}}{4 \sqrt{c x-1} \sqrt{c x+1}}
$$

$$
-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{5} d^{2} x^{2}}{4 \sqrt{c x-1} \sqrt{c x+1}}+\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} c^{3}}{2\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}-\frac{49 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x^{3} c^{6}}{6\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)}+\frac{7 b \sqrt{-d\left(c^{2} x^{2}-1\right)} d^{2} x c^{4}}{6\left(63 c^{4} x^{4}-15 c^{2} x^{2}+1\right)}
$$

$$
+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} c^{3} d^{2}}{8 \sqrt{c x-1} \sqrt{c x+1}}-\frac{a\left(-c^{2} d x^{2}+d\right)^{7 / 2}}{3 d x^{3}}+\frac{4 a c^{4} x\left(-c^{2} d x^{2}+d\right)^{5 / 2}}{3}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{x^{6}} \mathrm{~d} x
$$

Optimal(type 3, 251 leaves, 12 steps):
$\frac{c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{3 x^{3}}-\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{5 x^{5}}-\frac{c^{4} d^{2}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{x}$

$$
-\frac{b c d^{2} \sqrt{-c^{2} d x^{2}+d}}{20 x^{4} \sqrt{c x-1} \sqrt{c x+1}}+\frac{11 b c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}{30 x^{2} \sqrt{c x-1} \sqrt{c x+1}}+\frac{c^{5} d^{2}(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b \sqrt{c x-1} \sqrt{c x+1}}+\frac{23 b c^{5} d^{2} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{15 \sqrt{c x-1} \sqrt{c x+1}}
$$

Result(type ?, 2428 leaves): Display of huge result suppressed!
Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{x^{4} \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 131 leaves, 4 steps):

$$
\frac{b c \sqrt{c x-1} \sqrt{c x+1}}{6 x^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 b c^{3} \ln (x) \sqrt{c x-1} \sqrt{c x+1}}{3 \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{3 d x^{3}}-\frac{2 c^{2}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{3 d x}
$$

Result(type 3, 853 leaves):

$$
\begin{aligned}
& -\frac{a \sqrt{-c^{2} d x^{2}+d}}{3 d x^{3}}-\frac{2 a c^{2} \sqrt{-c^{2} d x^{2}+d}}{3 d x}-\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) c^{3}}{3 d\left(c^{2} x^{2}-1\right)}-\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}(c x-1)(c x+1) c^{6}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)} \\
& +\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} c^{8}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}+\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{5}}{d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}-\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} \operatorname{arccosh}(c x) c^{6}}{d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x(c x-1)(c x+1) c^{4}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} c^{6}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}+\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{3}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x \operatorname{arccosh}(c x) c^{4}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x+1} \sqrt{c x-1} c^{3}}{2 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} x c^{4}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right)}+\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) c^{2}}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) x} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c}{6 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) x^{2}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{3 d\left(3 c^{4} x^{4}-2 c^{2} x^{2}-1\right) x^{3}} \\
& +\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left(1+(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) c^{3}}{3 d\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 125 leaves, 4 steps):

$$
\frac{x(a+b \operatorname{arccosh}(c x))}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}{2 b c^{3} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b \ln \left(-c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}{2 c^{3} d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 278 leaves):
$\frac{a x}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{a \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{c^{2} d \sqrt{c^{2} d}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2}}{2 d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$

$$
\begin{aligned}
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x}{d^{2} c^{2}\left(c^{2} x^{2}-1\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}-1\right)}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 68 leaves, 3 steps):

$$
\frac{a+b \operatorname{arccosh}(c x)}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}+\frac{b \operatorname{arctanh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 197 leaves):

$$
\begin{aligned}
& \frac{a}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}} \\
& \quad+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}-1)}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 74 leaves, 2 steps):

$$
\frac{x(a+b \operatorname{arccosh}(c x))}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{b \ln \left(-c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}{2 c d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 3, 179 leaves):

$$
\begin{aligned}
& \frac{a x}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)}{c\left(c^{2} x^{2}-1\right) d^{2}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x}{\left(c^{2} x^{2}-1\right) d^{2}} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}-1\right)}{c\left(c^{2} x^{2}-1\right) d^{2}}
\end{aligned}
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{x\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 238 leaves, 9 steps):

$$
\frac{a+b \operatorname{arccosh}(c x)}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{2(a+b \operatorname{arccosh}(c x)) \arctan (c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{b \operatorname{arctanh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{d \sqrt{-c^{2} d x^{2}+d}+d}
$$

$$
-\frac{\mathrm{I} b \text { polylog}(2,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{d \sqrt{-c^{2} d x^{2}+d}}+\frac{\mathrm{I} b \operatorname{polylog}(2, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 4, 510 leaves):

```
\(\frac{a}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{a \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}}{x}\right)}{d^{3 / 2}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{\left(c^{2} x^{2}-1\right) d^{2}}\)
    \(-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{dilog}(1-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1}))}{\left(c^{2} x^{2}-1\right) d^{2}}\)
    \(+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{dilog}(1+\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1}))}{\left(c^{2} x^{2}-1\right) d^{2}}\)
    \(+\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1+\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1}))}{\left(c^{2} x^{2}-1\right) d^{2}}\)
    \(\left.-\frac{\mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1}))}{\left(c^{2} x^{2}\right.}\right)\)
                        \(\left(c^{2} x^{2}-1\right) d^{2}\)
    \(-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{\left(c^{2} x^{2}-1\right) d^{2}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}-1)}{\left(c^{2} x^{2}-1\right) d^{2}}\)
```

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{x^{3}\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 323 leaves, 13 steps):

$$
\begin{aligned}
& \frac{3 c^{2}(a+b \operatorname{arccosh}(c x))}{2 d \sqrt{-c^{2} d x^{2}+d}}+\frac{-a-b \operatorname{arccosh}(c x)}{2 d x^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b c \sqrt{c x-1} \sqrt{c x+1}}{2 d x \sqrt{-c^{2} d x^{2}+d}}+\frac{3 c^{2}(a+b \operatorname{arccosh}(c x)) \arctan (c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{d \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{b c^{2} \operatorname{arctanh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{d \sqrt{-c^{2} d x^{2}+d}}-\frac{3 \mathrm{I} b c^{2} \operatorname{polylog}(2,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{2 d \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

$$
+\frac{3 \mathrm{I} b c^{2} \operatorname{poly} \log (2, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{2 d \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 4, 647 leaves):

$$
\begin{aligned}
& -\frac{a}{2 d x^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{3 a c^{2}}{2 d \sqrt{-c^{2} d x^{2}+d}}-\frac{3 a c^{2} \ln \left(\frac{2 d+2 \sqrt{d} \sqrt{-c^{2} d x^{2}+d}}{x}\right)}{2 d^{3 / 2}}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) c^{2}}{2 d^{2}\left(c^{2} x^{2}-1\right)} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c}{2 d^{2}\left(c^{2} x^{2}-1\right) x}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{2 d^{2}\left(c^{2} x^{2}-1\right) x^{2}} \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1}) c^{2}}{\left(c^{2} x^{2}-1\right) d^{2}} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}-1) c^{2}}{\left(c^{2} x^{2}-1\right) d^{2}} \\
& -\frac{3 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{dilog}(1-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) c^{2}}{2\left(c^{2} x^{2}-1\right) d^{2}} \\
& +\frac{3 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{dilog}(1+\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) c^{2}}{2\left(c^{2} x^{2}-1\right) d^{2}} \\
& +\frac{3 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1+\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) c^{2}}{2\left(c^{2} x^{2}-1\right) d^{2}} \\
& -\frac{3 \mathrm{I} b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) c^{2}}{2\left(c^{2} x^{2}-1\right) d^{2}}
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{5}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 213 leaves, 5 steps):

$$
\begin{aligned}
& \frac{a+b \operatorname{arccosh}(c x)}{3 c^{6} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{2(a+b \operatorname{arccosh}(c x))}{c^{6} d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{c^{6} d^{3}}+\frac{b x \sqrt{-c^{2} d x^{2}+d}}{c^{5} d^{3} \sqrt{c x-1} \sqrt{c x+1}} \\
& \quad-\frac{b x \sqrt{-c^{2} d x^{2}+d}}{6 c^{5} d^{3}\left(-c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}+\frac{11 b \operatorname{arctanh}(c x) \sqrt{-c^{2} d x^{2}+d}}{6 c^{6} d^{3} \sqrt{c x-1} \sqrt{c x+1}}
\end{aligned}
$$

Result(type 3, 465 leaves):

$$
\begin{aligned}
& -\frac{a x^{4}}{c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{4 a x^{2}}{c^{4} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{8 a}{3 c^{6} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{2}}{c^{4} d^{3}\left(c^{2} x^{2}-1\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} x}{c^{5} d^{3}\left(c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{c^{6} d^{3}\left(c^{2} x^{2}-1\right)}+\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{2}}{\left(c^{2} x^{2}-1\right)^{2} d^{3} c^{4}} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} x}{6\left(c^{2} x^{2}-1\right)^{2} d^{3} c^{5}}-\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{3\left(c^{2} x^{2}-1\right)^{2} d^{3} c^{6}} \\
& \quad+\frac{11 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{6 d^{3} c^{6}\left(c^{2} x^{2}-1\right)} \\
& -\frac{11 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}-1)}{6 d^{3} c^{6}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 138 leaves, 4 steps):

$$
\frac{a+b \operatorname{arccosh}(c x)}{3 c^{4} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{-a-b \operatorname{arccosh}(c x)}{c^{4} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b x \sqrt{-c^{2} d x^{2}+d}}{6 c^{3} d^{3}(c x-1)^{3 / 2}(c x+1)^{3 / 2}}+\frac{5 b \operatorname{arctanh}(c x) \sqrt{-c^{2} d x^{2}+d}}{6 c^{4} d^{3} \sqrt{c x-1} \sqrt{c x+1}}
$$

Result(type 3, 312 leaves):

$$
\begin{aligned}
& \frac{a x^{2}}{c^{2} d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{2 a}{3 d c^{4}\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{2}}{d^{3}\left(c^{2} x^{2}-1\right)^{2} c^{2}}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} x}{6 d^{3}\left(c^{2} x^{2}-1\right)^{2} c^{3}} \\
& -\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh(cx)}}{3 d^{3}\left(c^{2} x^{2}-1\right)^{2} c^{4}}-\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}-1)}{6 d^{3} c^{4}\left(c^{2} x^{2}-1\right)} \\
& +\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{6 d^{3} c^{4}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{x^{2}\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 218 leaves, 5 steps):
$\frac{-a-b \operatorname{arccosh}(c x)}{d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{4 c^{2} x(a+b \operatorname{arccosh}(c x))}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{8 c^{2} x(a+b \operatorname{arccosh}(c x))}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{b c \sqrt{-c^{2} d x^{2}+d}}{6 d^{3}\left(-c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c \ln (x) \sqrt{-c^{2} d x^{2}+d}}{d^{3} \sqrt{c x-1} \sqrt{c x+1}}$

$$
+\frac{5 b c \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{6 d^{3} \sqrt{c x-1} \sqrt{c x+1}}
$$

Result(type 3, 1349 leaves):

$$
\begin{aligned}
& -\frac{a}{d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{4 a c^{2} x}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{8 a c^{2} x}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{16 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) c}{3 d^{3}\left(c^{2} x^{2}-1\right)} \\
& +\frac{32 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{7}(c x-1)(c x+1) c^{8}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{32 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{9} c^{10}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{80 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5}(c x-1)(c x+1) c^{6}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)} \\
& \\
& +\frac{112 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{7} c^{8}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}+\frac{64 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{4} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{5}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{64 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} \operatorname{arccosh}(c x) c^{6}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)} \\
& \\
& +\frac{20 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}(c x-1)(c x+1) c^{4}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{140 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} c^{6}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)} \\
& \\
& -\frac{136 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{3}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}+\frac{56 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} \operatorname{arccosh}(c x) c^{4}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x(c x-1)(c x+1) c^{2}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)} \\
& +\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \sqrt{c x+1} \sqrt{c x-1} c^{3}}{3 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}+\frac{24 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} c^{4}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}+\frac{24 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh(cx)\sqrt {cx-1}\sqrt {cx+1}c}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)} \\
& \\
& -\frac{44 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x \operatorname{arccosh}(c x) c^{2}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c}{2 d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)}-\frac{4 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x c^{2}}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right)} \\
& +\frac{9 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{d^{3}\left(8 c^{6} x^{6}-25 c^{4} x^{4}+26 c^{2} x^{2}-9\right) x}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left(1+(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) c}{d^{3}\left(c^{2} x^{2}-1\right)} \\
& +\frac{5 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}-1\right) c}{3 d^{3}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 40: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{x^{4}\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 295 leaves, 5 steps):

$$
\begin{aligned}
& \frac{-a-b \operatorname{arccosh}(c x)}{3 d x^{3}\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{2 c^{2}(a+b \operatorname{arccosh}(c x))}{d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{8 c^{4} x(a+b \operatorname{arccosh}(c x))}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{16 c^{4} x(a+b \operatorname{arccosh}(c x))}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{b c \sqrt{-c^{2} d x^{2}+d}}{6 d^{3} x^{2} \sqrt{c x-1} \sqrt{c x+1}} \\
& \quad-\frac{b c^{3} \sqrt{-c^{2} d x^{2}+d}}{6 d^{3}\left(-c^{2} x^{2}+1\right) \sqrt{c x-1} \sqrt{c x+1}}+\frac{8 b c^{3} \ln (x) \sqrt{-c^{2} d x^{2}+d}}{3 d^{3} \sqrt{c x-1} \sqrt{c x+1}}+\frac{4 b c^{3} \ln \left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{3 d^{3} \sqrt{c x-1} \sqrt{c x+1}} \\
& \text { Result(type 3, } 1877 \text { leaves) : }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{128 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{11} c^{14}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}+\frac{448 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{9} c^{12}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}-\frac{560 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{7} c^{10}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& +\frac{280 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} c^{8}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}-\frac{32 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} c^{6}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& -\frac{8 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x c^{4}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right) x^{3}}+\frac{8 a c^{4} x}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \\
& +\frac{16 a c^{4} x}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{2 a c^{2}}{d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{6 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) c^{2}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right) x}-\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x+1} \sqrt{c x-1} c^{3}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& -\frac{64 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{7} \operatorname{arccosh}(c x) c^{10}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}+\frac{160 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5} \operatorname{arccosh}(c x) c^{8}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& -\frac{344 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3} \operatorname{arccosh}(c x) c^{6}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}+\frac{12 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x \operatorname{arccosh}(c x) c^{4}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& +\frac{16 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{3}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}+\frac{128 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{9}(c x-1)(c x+1) c^{12}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& -\frac{320 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{7}(c x-1)(c x+1) c^{10}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}+\frac{80 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{5}(c x-1)(c x+1) c^{8}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& -\frac{40 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}(c x-1)(c x+1) c^{6}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}-\frac{8 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x(c x-1)(c x+1) c^{4}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& +\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \sqrt{c x+1} \sqrt{c x-1} c^{5}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c}{6 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right) x^{2}} \\
& -\frac{32 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) c^{3}}{3 d^{3}\left(c^{2} x^{2}-1\right)}+\frac{176 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{2} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{5}}{3 d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& +\frac{64 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{6} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{9}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)}-\frac{128 b \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{4} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c^{7}}{d^{3}\left(12 c^{8} x^{8}-36 c^{6} x^{6}+35 c^{4} x^{4}-10 c^{2} x^{2}-1\right)} \\
& +\frac{8 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{4}-1\right) c^{3}}{3 d^{3}\left(c^{2} x^{2}-1\right)}-\frac{a}{3 d x^{3}\left(-c^{2} d x^{2}+d\right)^{3 / 2}}
\end{aligned}
$$

Problem 42: Unable to integrate problem.

$$
\int(f x)^{m}\left(-c^{2} d x^{2}+d\right)(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Optimal(type 5, 170 leaves, 6 steps):
$\frac{d(f x)^{1+m}(a+b \operatorname{arccosh}(c x))}{f(1+m)}-\frac{c^{2} d(f x)^{3+m}(a+b \operatorname{arccosh}(c x))}{f^{3}(3+m)}+\frac{b c d(f x)^{2+m} \sqrt{c x-1} \sqrt{c x+1}}{f^{2}(3+m)^{2}}$

$$
-\quad b c d(7+3 m)(f x)^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}
$$

$$
f^{2}(1+m)(2+m)(3+m)^{2} \sqrt{c x-1} \sqrt{c x+1}
$$

Result (type 8, 27 leaves):

$$
\int(f x)^{m}\left(-c^{2} d x^{2}+d\right)(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Problem 44: Unable to integrate problem.

$$
\int(f x)^{m}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Optimal(type 5, 407 leaves, 7 steps):
$\frac{(f x)^{1+m}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))}{f(4+m)}+\frac{3 d(f x)^{1+m}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{f\left(m^{2}+6 m+8\right)}$

$$
\begin{aligned}
& +\frac{3 d(f x)^{1+m}(a+b \operatorname{arccosh}(c x)) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{m}{2}+\frac{1}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} d x^{2}+d}}{f(4+m)\left(m^{2}+3 m+2\right) \sqrt{-c x+1} \sqrt{c x+1}}-\frac{3 b c d(f x)^{2+m} \sqrt{-c^{2} d x^{2}+d}}{f^{2}(2+m)^{2}(4+m) \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{b c d(f x)^{2+m} \sqrt{-c^{2} d x^{2}+d}}{f^{2}(2+m)(4+m) \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{3} d(f x)^{4+m} \sqrt{-c^{2} d x^{2}+d}}{f^{4}(4+m)^{2} \sqrt{c x-1} \sqrt{c x+1}} \\
& - \\
& \\
& \\
& 3 b c d(f x)^{2+m} \text { HypergeometricPFQ }\left(\left[1,1+\frac{m}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}, 2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} d x^{2}+d}
\end{aligned}
$$

$$
f^{2}(1+m)(2+m)^{2}(4+m) \sqrt{c x-1} \sqrt{c x+1}
$$

Result(type 8, 29 leaves):

$$
\int(f x)^{m}\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{(f x)^{m}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 266 leaves, 4 steps):
$\frac{(f x)^{1+m}(a+b \operatorname{arccosh}(c x))}{d f \sqrt{-c^{2} d x^{2}+d}}+\frac{b c(f x)^{2+m} \text { hypergeom }\left(\left[1,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{d f^{2}(2+m) \sqrt{-c^{2} d x^{2}+d}}$

$$
-\frac{b c m(f x)^{2+m} \text { HypergeometricPFQ }\left(\left[1,1+\frac{m}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}, 2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{d f^{2}(1+m)(2+m) \sqrt{-c^{2} d x^{2}+d}}
$$

$-\frac{m(f x)^{1+m}(a+b \operatorname{arccosh}(c x)) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{m}{2}+\frac{1}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}{}$

$$
d f(1+m) \sqrt{-c^{2} d x^{2}+d}
$$

Result(type 8, 29 leaves):

$$
\int \frac{(f x)^{m}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{(f x)^{m}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 394 leaves, 7 steps):

$$
\begin{aligned}
& \frac{(f x)^{1+m}(a+b \operatorname{arccosh}(c x))}{3 d f\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{(2-m)(f x)^{1+m}(a+b \operatorname{arccosh}(c x))}{3 d^{2} f \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{b c(2-m)(f x)^{2+m} \text { hypergeom }\left(\left[1,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{}
\end{aligned}
$$

$$
+\frac{3 d^{2} f^{2}(2+m) \sqrt{-c^{2} d x^{2}+d}}{}
$$

$$
+\frac{b c(f x)^{2+m} \text { hypergeom }\left(\left[2,1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{}
$$

$$
3 d^{2} f^{2}(2+m) \sqrt{-c^{2} d x^{2}+d}
$$

$$
-\frac{b c(2-m) m(f x)^{2+m} \text { HypergeometricPFQ }\left(\left[1,1+\frac{m}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}, 2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{}
$$

$$
3 d^{2} f^{2}(1+m)(2+m) \sqrt{-c^{2} d x^{2}+d}
$$

$$
-\underline{(2-m) m(f x)^{1+m}(a+b \operatorname{arccosh}(c x)) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{m}{2}+\frac{1}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}
$$

$$
-\frac{3 d^{2} f(1+m) \sqrt{-c^{2} d x^{2}+d}}{}
$$

Result(type 8, 29 leaves):

$$
\int \frac{(f x)^{m}(a+b \operatorname{arccosh}(c x))}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 49: Result more than twice size of optimal antiderivative.

$$
\int x\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 418 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{\left(-c^{2} d x^{2}+d\right)^{7 / 2}(a+b \operatorname{arccosh}(c x))^{2}}{7 c^{2} d}-\frac{32 b^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{245 c^{2}(-c x+1)(c x+1)}-\frac{16 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{735 c^{2}(-c x+1)(c x+1)} \\
& -\frac{12 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{3} \sqrt{-c^{2} d x^{2}+d}}{1225 c^{2}(-c x+1)(c x+1)}-\frac{2 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{4} \sqrt{-c^{2} d x^{2}+d}}{343 c^{2}(-c x+1)(c x+1)}+\frac{2 b d^{2} x(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{7 c \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{2 b c d^{2} x^{3}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{7 \sqrt{c x-1} \sqrt{c x+1}}+\frac{6 b c^{3} d^{2} x^{5}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{35 \sqrt{c x-1} \sqrt{c x+1}}-\frac{2 b c^{5} d^{2} x^{7}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{49 \sqrt{c x-1} \sqrt{c x+1}}
\end{aligned}
$$

Result(type 3, 1957 leaves):

$$
\begin{aligned}
& -\frac{a^{2}\left(-c^{2} d x^{2}+d\right)^{7 / 2}}{7 c^{2} d}+b^{2}\left(\frac { 1 } { 4 3 9 0 4 (c x + 1) c ^ { 2 } (c x - 1) } \left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(64 c^{8} x^{8}-144 c^{6} x^{6}+64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+104 c^{4} x^{4}\right.\right.\right. \\
& \left.\left.-112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-25 c^{2} x^{2}+56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-7 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)\left(49 \operatorname{arccosh}(c x)^{2}-14 \operatorname{arccosh}(c x)+2\right) d^{2}\right)
\end{aligned}
$$

$$
-\frac{1}{3200(c x+1) c^{2}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+13 c^{2} x^{2}-20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}\right.\right.
$$

$$
\left.+5 \sqrt{c x-1} \sqrt{c x+1} x c-1)\left(25 \operatorname{arccosh}(c x)^{2}-10 \operatorname{arccosh}(c x)+2\right) d^{2}\right)
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}+4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-3 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)\left(9 \operatorname{arccosh}(c x)^{2}-6 \operatorname{arccosh}(c x)+2\right) d^{2}}{384(c x+1) c^{2}(c x-1)}
$$

$$
-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)\left(\operatorname{arccosh}(c x)^{2}-2 \operatorname{arccosh}(c x)+2\right) d^{2}}{128(c x+1) c^{2}(c x-1)}
$$

$$
-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)\left(\operatorname{arccosh}(c x)^{2}+2 \operatorname{arccosh}(c x)+2\right) d^{2}}{128(c x+1) c^{2}(c x-1)}
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+4 c^{4} x^{4}+3 \sqrt{c x-1} \sqrt{c x+1} x c-5 c^{2} x^{2}+1\right)\left(9 \operatorname{arccosh}(c x)^{2}+6 \operatorname{arccosh}(c x)+2\right) d^{2}}{384(c x+1) c^{2}(c x-1)}
$$

$$
-\frac{1}{3200(c x+1) c^{2}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+16 c^{6} x^{6}+20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-28 c^{4} x^{4}-5 \sqrt{c x-1} \sqrt{c x+1} x c\right.\right.
$$

$$
\left.\left.+13 c^{2} x^{2}-1\right)\left(25 \operatorname{arccosh}(c x)^{2}+10 \operatorname{arccosh}(c x)+2\right) d^{2}\right)+\frac{1}{43904(c x+1) c^{2}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}\right.\right.
$$

$$
\left.+64 c^{8} x^{8}+112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-144 c^{6} x^{6}-56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+104 c^{4} x^{4}+7 \sqrt{c x-1} \sqrt{c x+1} x c-25 c^{2} x^{2}+1\right)\left(49 \operatorname{arccosh}(c x)^{2}\right.
$$

$$
\left.\left.+14 \operatorname{arccosh}(c x)+2) d^{2}\right)\right)+2 a b\left(\frac { 1 } { 6 2 7 2 (c x + 1) c ^ { 2 } (c x - 1) } \left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(64 c^{8} x^{8}-144 c^{6} x^{6}+64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+104 c^{4} x^{4}\right.\right.\right.
$$

$\left.\left.-112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-25 c^{2} x^{2}+56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-7 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1+7 \operatorname{arccosh}(c x)) d^{2}\right)$

$$
-\frac{1}{640(c x+1) c^{2}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(16 c^{6} x^{6}-28 c^{4} x^{4}+16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+13 c^{2} x^{2}-20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}\right.\right.
$$

$$
\left.+5 \sqrt{c x-1} \sqrt{c x+1} x c-1)(-1+5 \operatorname{arccosh}(c x)) d^{2}\right)
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(4 c^{4} x^{4}-5 c^{2} x^{2}+4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-3 \sqrt{c x-1} \sqrt{c x+1} x c+1\right)(-1+3 \operatorname{arccosh}(c x)) d^{2}}{128(c x+1) c^{2}(c x-1)}
$$

$$
-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)-1) d^{2}}{128(c x+1) c^{2}(c x-1)}
$$

$$
-\frac{5 \sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)(\operatorname{arccosh}(c x)+1) d^{2}}{128(c x+1) c^{2}(c x-1)}
$$

$$
+\frac{\sqrt{-d\left(c^{2} x^{2}-1\right)}\left(-4 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+4 c^{4} x^{4}+3 \sqrt{c x-1} \sqrt{c x+1} x c-5 c^{2} x^{2}+1\right)(1+3 \operatorname{arccosh}(c x)) d^{2}}{128(c x+1) c^{2}(c x-1)}
$$

$$
-\frac{1}{640(c x+1) c^{2}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-16 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}+16 c^{6} x^{6}+20 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}-28 c^{4} x^{4}-5 \sqrt{c x-1} \sqrt{c x+1} x c\right.\right.
$$

$$
\left.\left.+13 c^{2} x^{2}-1\right)(1+5 \operatorname{arccosh}(c x)) d^{2}\right)+\frac{1}{6272(c x+1) c^{2}(c x-1)}\left(\sqrt { - d (c ^ { 2 } x ^ { 2 } - 1) } \left(-64 \sqrt{c x+1} \sqrt{c x-1} x^{7} c^{7}+64 c^{8} x^{8}\right.\right.
$$

$$
\left.\left.\left.+112 \sqrt{c x+1} \sqrt{c x-1} x^{5} c^{5}-144 c^{6} x^{6}-56 c^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}+104 c^{4} x^{4}+7 \sqrt{c x-1} \sqrt{c x+1} x c-25 c^{2} x^{2}+1\right)(1+7 \operatorname{arccosh}(c x)) d^{2}\right)\right)
$$

Problem 50: Unable to integrate problem.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))^{2}}{x} \mathrm{~d} x
$$

Optimal(type 4, 797 leaves, 26 steps):
$\frac{d\left(-c^{2} d x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccosh}(c x))^{2}}{3}+\frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))^{2}}{5}+\frac{68 b^{2} d^{2} \sqrt{-c^{2} d x^{2}+d}}{27}-\frac{2 b^{2} c^{2} d^{2} x^{2} \sqrt{-c^{2} d x^{2}+d}}{27}$
$+\frac{16 b^{2} d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{75(-c x+1)(c x+1)}+\frac{8 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{2} \sqrt{-c^{2} d x^{2}+d}}{225(-c x+1)(c x+1)}+\frac{2 b^{2} d^{2}\left(-c^{2} x^{2}+1\right)^{3} \sqrt{-c^{2} d x^{2}+d}}{125(-c x+1)(c x+1)}+d^{2}(a$
$+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}-\frac{2 a b c d^{2} x \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}}-\frac{2 b^{2} c d^{2} x \operatorname{arccosh}(c x) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}}-\frac{16 b c d^{2} x(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{15 \sqrt{c x-1} \sqrt{c x+1}}$

$$
\begin{aligned}
& +\frac{22 b c^{3} d^{2} x^{3}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{45 \sqrt{c x-1} \sqrt{c x+1}}-\frac{2 b c^{5} d^{2} x^{5}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{25 \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{2 d^{2}(a+b \operatorname{arccosh}(c x))^{2} \arctan (c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{2 \operatorname{I~} b d^{2}(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}(2, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{2 \mathrm{I} b^{2} d^{2} \operatorname{polylog}(3, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}}-\frac{2 \mathrm{I} b^{2} d^{2} \operatorname{polylog}(3,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{2 \mathrm{I} b d^{2}(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}(2,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{-c^{2} d x^{2}+d}}{\sqrt{c x-1} \sqrt{c x+1}}
\end{aligned}
$$

Result(type 8, 29 leaves):

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))^{2}}{x} \mathrm{~d} x
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))^{2}}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 194 leaves, 5 steps):
$-\frac{b^{2} x(-c x+1)(c x+1)}{4 c^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{4 c^{3} \sqrt{-c^{2} d x^{2}+d}}-\frac{b x^{2}(a+b \operatorname{arccosh}(c x)) \sqrt{c x-1} \sqrt{c x+1}}{2 c \sqrt{-c^{2} d x^{2}+d}}$

$$
+\frac{(a+b \operatorname{arccosh}(c x))^{3} \sqrt{c x-1} \sqrt{c x+1}}{6 b c^{3} \sqrt{-c^{2} d x^{2}+d}}-\frac{x(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 c^{2} d}
$$

Result(type 3, 623 leaves):

$$
\begin{aligned}
& -\frac{a^{2} x \sqrt{-c^{2} d x^{2}+d}}{2 c^{2} d}+\frac{a^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 c^{2} \sqrt{c^{2} d}}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} x}{4 d c^{2}\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}}{4 d\left(c^{2} x^{2}-1\right)} \\
& +\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} x^{2}}{2 d c\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2} x^{3}}{2 d\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2} x}{2 d c^{2}\left(c^{2} x^{2}-1\right)} \\
& -\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{3}}{6 d c^{3}\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{4 d c^{3}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

```
\(-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2}}{2 d c^{3}\left(c^{2} x^{2}-1\right)}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{3}}{d\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x+1} \sqrt{c x-1} x^{2}}{2 d c\left(c^{2} x^{2}-1\right)}\)
\(+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x}{d c^{2}\left(c^{2} x^{2}-1\right)}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1}}{4 d c^{3}\left(c^{2} x^{2}-1\right)}\)
```

Problem 52: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccosh}(c x))^{2}}{x \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 4, 300 leaves, 8 steps):
$\frac{2(a+b \operatorname{arccosh}(c x))^{2} \arctan (c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{\sqrt{-c^{2} d x^{2}+d}}$
$-\frac{2 \mathrm{I} b(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}(2,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{\sqrt{-c^{2} d x^{2}+d}}$
$+\frac{2 \mathrm{I} b(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}(2, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{\sqrt{-c^{2} d x^{2}+d}}$
$+\frac{2 \mathrm{I} b^{2} \operatorname{polylog}(3,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{\sqrt{-c^{2} d x^{2}+d}}-\frac{2 \mathrm{I} b^{2} \operatorname{polylog}(3, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{\sqrt{-c^{2} d x^{2}+d}}$
Result(type 8, 29 leaves):

$$
\int \frac{(a+b \operatorname{arccosh}(c x))^{2}}{x \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}(a+b \operatorname{arccosh}(c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 414 leaves, 15 steps):

$$
\begin{aligned}
& \frac{b^{2} x(-c x+1)(c x+1)}{4 c^{4} d \sqrt{-c^{2} d x^{2}+d}}+\frac{x^{3}(a+b \operatorname{arccosh}(c x))^{2}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b^{2} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{4 c^{5} d \sqrt{-c^{2} d x^{2}+d}}+\frac{b x^{2}(a+b \operatorname{arccosh}(c x)) \sqrt{c x-1} \sqrt{c x+1}}{2 c^{3} d \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}{c^{5} d \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \operatorname{arccosh}(c x))^{3} \sqrt{c x-1} \sqrt{c x+1}}{2 b c^{5} d \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

$$
-\frac{2 b(a+b \operatorname{arccosh}(c x)) \ln \left(1-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{c^{5} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b^{2} \operatorname{polylog}\left(2,(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{c^{5} d \sqrt{-c^{2} d x^{2}+d}}
$$

$$
+\frac{3 x(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 c^{4} d^{2}}
$$

Result(type 4, 1140 leaves):

Problem 54: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 255 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{a^{2} x^{3}}{2 c^{2} d \sqrt{-c^{2} d x^{2}+d}}+\frac{3 a^{2} x}{2 c^{4} d \sqrt{-c^{2} d x^{2}+d}}-\frac{3 a^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 c^{4} d \sqrt{c^{2} d}}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} x^{3}}{4 d^{2} c^{2}\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} x}{4 d^{2} c^{4}\left(c^{2} x^{2}-1\right)} \\
& -\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2}}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} x^{2}}{2 d^{2} c^{3}\left(c^{2} x^{2}-1\right)} \\
& +\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1-c x-\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)} \\
& +\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2} x^{3}}{2 d^{2} c^{2}\left(c^{2} x^{2}-1\right)} \\
& -\frac{3 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2} x}{2 d^{2} c^{4}\left(c^{2} x^{2}-1\right)}+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{polylog}(2, c x+\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)} \\
& +\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{4 d^{2} c^{5}\left(c^{2} x^{2}-1\right)}+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{polylog}(2,-c x-\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)} \\
& +\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{3}}{2 d^{2} c^{5}\left(c^{2} x^{2}-1\right)}+\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2}}{2 d^{2} c^{5}\left(c^{2} x^{2}-1\right)} \\
& +\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{3}}{d^{2} c^{2}\left(c^{2} x^{2}-1\right)}-\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x+1} \sqrt{c x-1} x^{2}}{2 d^{2} c^{3}\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)} \\
& -\frac{3 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x}{d^{2} c^{4}\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1}}{4 d^{2} c^{5}\left(c^{2} x^{2}-1\right)} \\
& +\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}-1\right)}{d^{2} c^{5}\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

$\frac{x(a+b \operatorname{arccosh}(c x))^{2}}{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}-\frac{(a+b \operatorname{arccosh}(c x))^{3} \sqrt{c x-1} \sqrt{c x+1}}{(a \sqrt{2}}$
$c^{2} d \sqrt{-c^{2} d x^{2}+d} \quad c^{3} d \sqrt{-c^{2} d x^{2}+d} \quad 3 b c^{3} d \sqrt{-c^{2} d x^{2}+d}$
$-\frac{2 b(a+b \operatorname{arccosh}(c x)) \ln \left(1-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{c^{3} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b^{2} \operatorname{polylog}\left(2,(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{c^{3} d \sqrt{-c^{2} d x^{2}+d}}$

Result(type 4, 737 leaves):
$\frac{a^{2} x}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{a^{2} \arctan \left(\frac{\sqrt{c^{2} d} x}{\sqrt{-c^{2} d x^{2}+d}}\right)}{c^{2} d \sqrt{c^{2} d}}+\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{3}}{3 d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$
$-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2}}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2} x}{d^{2} c^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$
$+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{polylog}(2,-c x-\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$
$+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1-c x-\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$
$+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{polylog}(2, c x+\sqrt{c x-1} \sqrt{c x+1})}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}+\frac{a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2}}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$
$-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x}{d^{2} c^{2}\left(c^{2} x^{2}-1\right)}$
$+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}-1\right)}{d^{2} c^{3}\left(c^{2} x^{2}-1\right)}$

Problem 55: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \operatorname{arccosh}(c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 215 leaves, 8 steps):

$$
\begin{aligned}
& \frac{(a+b \operatorname{arccosh}(c x))^{2}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}+\frac{4 b(a+b \operatorname{arccosh}(c x)) \operatorname{arctanh}(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{2 b^{2} \operatorname{polylog}(2,-c x-\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{2 b^{2} \operatorname{polylog}(2, c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type 4, 541 leaves):

```
\(\frac{a^{2}}{c^{2} d \sqrt{-c^{2} d x^{2}+d}}-\frac{b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)^{2}}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}-\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}\)
\(-\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{polylog}(2,-c x-\sqrt{c x-1} \sqrt{c x+1})}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}\)
\(+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x) \ln (1-c x-\sqrt{c x-1} \sqrt{c x+1})}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}\)
\(+\frac{2 b^{2} \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \text { polylog }(2, c x+\sqrt{c x-1} \sqrt{c x+1})}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}\)
\(-\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (1+c x+\sqrt{c x-1} \sqrt{c x+1})}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}\)
\(+\frac{2 a b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}-1)}{c^{2}\left(c^{2} x^{2}-1\right) d^{2}}\)
```

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))^{2}}{\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 363 leaves, 12 steps):

$$
\begin{aligned}
& \frac{x^{3}(a+b \operatorname{arccosh}(c x))^{2}}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{b^{2}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2}(-c x+1)}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{b x^{2}(a+b \operatorname{arccosh}(c x)) \sqrt{c x-1} \sqrt{c x+1}}{3 c d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}-\frac{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& \quad+\frac{2 b(a+b \operatorname{arccosh}(c x)) \ln \left(1-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b^{2} \operatorname{polylog}\left(2,(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{3 c^{3} d^{2} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type ?, 3444 leaves): Display of huge result suppressed!
Problem 57: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccosh}(c x))^{2}}{x\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 621 leaves, 26 steps):
$\frac{(a+b \operatorname{arccosh}(c x))^{2}}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{b^{2}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{(a+b \operatorname{arccosh}(c x))^{2}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b c x(a+b \operatorname{arccosh}(c x)) \sqrt{c x-1} \sqrt{c x+1}}{3 d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}$

```
\(+\frac{2(a+b \operatorname{arccosh}(c x))^{2} \arctan (c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}\)
```



```
\(3 d^{2} \sqrt{-c^{2} d x^{2}+d}\)
                                    \(3 d^{2} \sqrt{-c^{2} d x^{2}+d}\)
\(-\frac{2 \mathrm{I} b(a+b \operatorname{arccosh}(c x)) \text { polylog }(2,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}\)
\(+\frac{2 \mathrm{I} b(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}(2, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}\)
\(-\frac{7 b^{2} \operatorname{polylog}(2, c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{c x-1} \sqrt{c x+1}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{2 \mathrm{I} b^{2} \operatorname{polylog}(3,-\mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}\)
\(-\frac{2 \mathrm{I} b^{2} \text { polylog }(3, \mathrm{I}(c x+\sqrt{c x-1} \sqrt{c x+1})) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}\)
```

Result(type 8, 29 leaves):

$$
\int \frac{(a+b \operatorname{arccosh}(c x))^{2}}{x\left(-c^{2} d x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccosh}(c x))^{2}}{x^{2}\left(-c^{2} d x^{2}+d\right)^{5 / 2}} d x
$$

Optimal(type 4, 470 leaves, 21 steps):

$$
\begin{aligned}
& -\frac{(a+b \operatorname{arccosh}(c x))^{2}}{d x\left(-c^{2} d x^{2}+d\right)^{3 / 2}}+\frac{4 c^{2} x(a+b \operatorname{arccosh}(c x))^{2}}{3 d\left(-c^{2} d x^{2}+d\right)^{3 / 2}}-\frac{b^{2} c^{2} x}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{8 c^{2} x(a+b \operatorname{arccosh}(c x))^{2}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}+\frac{b c(a+b \operatorname{arccosh}(c x)) \sqrt{c x-1} \sqrt{c x+1}}{3 d^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{8 c(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{4 b c(a+b \operatorname{arccosh}(c x)) \operatorname{arctanh}\left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{16 b c(a+b \operatorname{arccosh}(c x)) \ln \left(1-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}} \\
& -\frac{b^{2} c \operatorname{polylog}\left(2,-(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{d^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{5 b^{2} c \operatorname{polylog}\left(2,(c x+\sqrt{c x-1} \sqrt{c x+1})^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{3 d^{2} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result(type ?, 3797 leaves): Display of huge result suppressed!
Problem 59: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4} \operatorname{arccosh}(a x)^{2}}{\sqrt{-a^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 3, 199 leaves, 11 steps):
$\frac{15 \operatorname{arccosh}(a x) \sqrt{a x-1}}{64 a^{5} \sqrt{-a x+1}}-\frac{3 x^{2} \operatorname{arccosh}(a x) \sqrt{a x-1}}{8 a^{3} \sqrt{-a x+1}}-\frac{x^{4} \operatorname{arccosh}(a x) \sqrt{a x-1}}{8 a \sqrt{-a x+1}}+\frac{\operatorname{arccosh}(a x)^{3} \sqrt{a x-1}}{8 a^{5} \sqrt{-a x+1}}-\frac{15 x \sqrt{-a x+1} \sqrt{a x+1}}{64 a^{4}}$

$$
-\frac{x^{3} \sqrt{-a x+1} \sqrt{a x+1}}{32 a^{2}}-\frac{3 x \operatorname{arccosh}(a x)^{2} \sqrt{-a^{2} x^{2}+1}}{8 a^{4}}-\frac{x^{3} \operatorname{arccosh}(a x)^{2} \sqrt{-a^{2} x^{2}+1}}{4 a^{2}}
$$

Result(type 3, 487 leaves):
$-\frac{\sqrt{-a^{2} x^{2}+1} \sqrt{a x-1} \sqrt{a x+1} \operatorname{arccosh}(a x)^{3}}{8 a^{5}\left(a^{2} x^{2}-1\right)}-\frac{1}{512 a^{5}\left(a^{2} x^{2}-1\right)}\left(\sqrt{-a^{2} x^{2}+1}\left(8 a^{5} x^{5}-12 x^{3} a^{3}+8 \sqrt{a x+1} \sqrt{a x-1} x^{4} a^{4}+4 a x\right.\right.$
$\left.\left.-8 \sqrt{a x+1} \sqrt{a x-1} x^{2} a^{2}+\sqrt{a x-1} \sqrt{a x+1}\right)\left(8 \operatorname{arccosh}(a x)^{2}-4 \operatorname{arccosh}(a x)+1\right)\right)$

$$
-\frac{\sqrt{-a^{2} x^{2}+1}\left(2 x^{3} a^{3}-2 a x+2 \sqrt{a x+1} \sqrt{a x-1} x^{2} a^{2}-\sqrt{a x-1} \sqrt{a x+1}\right)\left(2 \operatorname{arccosh}(a x)^{2}-2 \operatorname{arccosh}(a x)+1\right)}{16 a^{5}\left(a^{2} x^{2}-1\right)}
$$

$$
-\frac{\sqrt{-a^{2} x^{2}+1}\left(2 x^{3} a^{3}-2 a x-2 \sqrt{a x+1} \sqrt{a x-1} x^{2} a^{2}+\sqrt{a x-1} \sqrt{a x+1}\right)\left(2 \operatorname{arccosh}(a x)^{2}+2 \operatorname{arccosh}(a x)+1\right)}{16 a^{5}\left(a^{2} x^{2}-1\right)}
$$

$$
-\frac{1}{512 a^{5}\left(a^{2} x^{2}-1\right)}\left(\sqrt { - a ^ { 2 } x ^ { 2 } + 1 } \left(8 a^{5} x^{5}-12 x^{3} a^{3}-8 \sqrt{a x+1} \sqrt{a x-1} x^{4} a^{4}+4 a x+8 \sqrt{a x+1} \sqrt{a x-1} x^{2} a^{2}\right.\right.
$$

$$
\left.-\sqrt{a x-1} \sqrt{a x+1})\left(8 \operatorname{arccosh}(a x)^{2}+4 \operatorname{arccosh}(a x)+1\right)\right)
$$

Problem 61: Unable to integrate problem.

$$
\int \frac{\operatorname{arccosh}(a x)^{2}}{x \sqrt{-a^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 220 leaves, 8 steps):
$\frac{2 \operatorname{arccosh}(a x)^{2} \arctan (a x+\sqrt{a x-1} \sqrt{a x+1}) \sqrt{a x-1}}{\sqrt{-a x+1}}-\frac{2 \mathrm{I} \operatorname{arccosh}(a x) \operatorname{polylog}(2,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1})) \sqrt{a x-1}}{\sqrt{-a x+1}}$
$+\frac{2 \operatorname{I~} \operatorname{arccosh}(a x) \operatorname{polylog}(2, \mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1})) \sqrt{a x-1}}{\sqrt{-a x+1}}+\frac{2 \operatorname{Ipolylog}(3,-\mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1})) \sqrt{a x-1}}{\sqrt{-a x+1}}$
$-\frac{2 \operatorname{Ipoly} \log (3, \mathrm{I}(a x+\sqrt{a x-1} \sqrt{a x+1})) \sqrt{a x-1}}{\sqrt{-a x+1}}$
Result(type 8, 24 leaves):

$$
\int \frac{\operatorname{arccosh}(a x)^{2}}{x \sqrt{-a^{2} x^{2}+1}} \mathrm{~d} x
$$

Problem 63: Unable to integrate problem.

$$
\int(f x)^{m}\left(-c^{2} d x^{2}+d\right)(a+b \operatorname{arccosh}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 1 step):
0
Result(type 8, 29 leaves):

$$
\int(f x)^{m}\left(-c^{2} d x^{2}+d\right)(a+b \operatorname{arccosh}(c x))^{2} \mathrm{~d} x
$$

Problem 74: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}\left(-c^{2} x^{2}+1\right)^{3 / 2}}{a+b \operatorname{arccosh}(c x)} \mathrm{d} x
$$

Optimal(type 4, 349 leaves, 15 steps):

$$
\begin{array}{r}
-\frac{3 \operatorname{Chi}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right) \cosh \left(\frac{a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}}+\frac{3 \operatorname{Chi}\left(\frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \cosh \left(\frac{3 a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}} \\
+\frac{\operatorname{Chi}\left(\frac{5(a+b \operatorname{arccosh}(c x))}{b}\right) \cosh \left(\frac{5 a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}}-\frac{\operatorname{Chi}\left(\frac{7(a+b \operatorname{arccosh}(c x))}{b}\right) \cosh \left(\frac{7 a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}} \\
+\frac{3 \operatorname{Shi}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right) \sinh \left(\frac{a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}}-\frac{3 \operatorname{Shi}\left(\frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{3 a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}} \\
-\frac{\operatorname{Shi}\left(\frac{5(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{5 a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}}+\frac{\operatorname{Shi}\left(\frac{7(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{7 a}{b}\right) \sqrt{-c x+1}}{64 b c^{4} \sqrt{c x-1}}
\end{array}
$$

Result(type 4, 724 leaves):

$$
\left.-\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(7 \operatorname{arccosh}(c x)+\frac{7 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+7 a}{b}}}{128(c x+1) c^{4}(c x-1) b}\right) .
$$

$+\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(5 \operatorname{arccosh}(c x)+\frac{5 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+5 a}{b}}}{128(c x+1) c^{4}(c x-1) b}$
$+\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(3 \operatorname{arccosh}(c x)+\frac{3 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+3 a}{b}}}{128(c x+1) c^{4}(c x-1) b}$
$-\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(\operatorname{arccosh}(c x)+\frac{a}{b}\right) \mathrm{e}^{\frac{a+b \operatorname{arccosh}(c x)}{b}}}{128(c x+1) c^{4}(c x-1) b}$
$+\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(-\operatorname{arccosh}(c x)-\frac{a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)-a}{b}}}{128(c x+1) c^{4}(c x-1) b}$
$+\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(-3 \operatorname{arccosh}(c x)-\frac{3 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)-3 a}{b}}}{128(c x+1) c^{4}(c x-1) b}$
$+\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(-5 \operatorname{arccosh}(c x)-\frac{5 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)-5 a}{b}}}{128 c^{4}(c x-1) b}$

Problem 79: Result more than twice size of optimal antiderivative.

Optimal(type 4, 53 leaves, 5 steps):

$$
\frac{3 \operatorname{Chi}(\operatorname{arccosh}(a x)) \sqrt{a x-1}}{4 a^{4} \sqrt{-a x+1}}+\frac{\operatorname{Chi}(3 \operatorname{arccosh}(a x)) \sqrt{a x-1}}{4 a^{4} \sqrt{-a x+1}}
$$

Result(type 4, 199 leaves):

$$
\begin{aligned}
& \frac{\sqrt{-a^{2} x^{2}+1} \sqrt{a x-1} \sqrt{a x+1} \mathrm{Ei}_{1}(3 \operatorname{arccosh}(a x))}{8 a^{4}\left(a^{2} x^{2}-1\right)}+\frac{\sqrt{-a^{2} x^{2}+1} \sqrt{a x-1} \sqrt{a x+1} \mathrm{Ei}_{1}(-3 \operatorname{arccosh}(a x))}{8 a^{4}\left(a^{2} x^{2}-1\right)} \\
& +\frac{3 \sqrt{-a^{2} x^{2}+1} \sqrt{a x-1} \sqrt{a x+1} \mathrm{Ei}_{1}(\operatorname{arccosh}(a x))}{8 a^{4}\left(a^{2} x^{2}-1\right)}+\frac{3 \sqrt{-a^{2} x^{2}+1} \sqrt{a x-1} \sqrt{a x+1} \mathrm{Ei}_{1}(-\operatorname{arccosh}(a x))}{8 a^{4}\left(a^{2} x^{2}-1\right)}
\end{aligned}
$$

[^0]$$
\int \frac{x^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2}}{(a+b \operatorname{arccosh}(c x))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 312 leaves, 21 steps):

$$
-\frac{\operatorname{Chi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{4 a}{b}\right) \sqrt{-c x+1}}{4 b^{2} c^{3} \sqrt{c x-1}}+\frac{3 \operatorname{Chi}\left(\frac{6(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{6 a}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}
$$

$$
-\frac{x^{2}\left(-c^{2} x^{2}+1\right)^{3 / 2} \sqrt{c x-1} \sqrt{c x+1}}{b c(a+b \operatorname{arccosh}(c x))}
$$

Result(type 4, 1175 leaves):

$$
\begin{aligned}
& -\frac{1}{64(c x+1) c^{3}(c x-1)(a+b \operatorname{arccosh}(c x)) b}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(-32 \sqrt{c x+1} \sqrt{c x-1} x^{6} c^{6}+32 c^{7} x^{7}+48 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}-64 c^{5} x^{5}\right.\right. \\
& \left.\left.-18 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+38 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-6 c x\right)\right) \\
& +\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(6 \operatorname{arccosh}(c x)+\frac{6 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+6 a}{b}}}{32(c x+1) c^{3}(c x-1) b^{2}} \\
& +\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(32 \sqrt{c x-1} \sqrt{c x+1} x^{5} b c^{5}+32 x^{6} b c^{6}-32 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}-48 x^{4} b c^{4}\right.\right. \\
& + \\
& +\frac{\left.\left.6 b \sqrt{c x-1} \sqrt{c x+1} c x+18 x^{2} b c^{2}+6 \operatorname{arccosh}(c x) \mathrm{e}^{-\frac{6 a}{b}} \operatorname{Ei}_{1}\left(-6 \operatorname{arccosh}(c x)-\frac{6 a}{b}\right) b+6 \mathrm{e}^{-\frac{6 a}{b}} \mathrm{Ei}_{1}\left(-6 \operatorname{arccosh}(c x)-\frac{6 a}{b}\right) a-b\right)\right)}{16 \sqrt{c x-1} \sqrt{c x+1} c^{3}(a+b \operatorname{arccosh}(c x)) b} \\
& +\frac{\sqrt{-c^{2} x^{2}+1}\left(-8 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+8 c^{5} x^{5}+8 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-12 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+4 c x\right)}{32(c x+1) c^{3}(c x-1)(a+b \operatorname{arccosh}(c x)) b} \\
& +\frac{\sqrt{-c^{2} x^{2}+1}}{} \\
& +\frac{\sqrt{-c^{2} x^{2}+1}\left(-2 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+2 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-2 c x\right)}{64(c x+1) c^{3}(c x-1)(a+b \operatorname{arccosh}(c x)) b}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\cosh \left(\frac{2 a}{b}\right) \operatorname{Shi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}+\frac{\cosh \left(\frac{4 a}{b}\right) \operatorname{Shi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{4 b^{2} c^{3} \sqrt{c x-1}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(2 \operatorname{arccosh}(c x)+\frac{2 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+2 a}{b}}}{32(c x+1) c^{3}(c x-1) b^{2}} \\
& -\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(2 b \sqrt{c x-1} \sqrt{c x+1} c x+2 x^{2} b c^{2}+2 \operatorname{arccosh}(c x) \operatorname{Ei}_{1}(-2 \operatorname{arccosh}(c x)\right.\right. \\
& \left.\left.\left.-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} b+2 \operatorname{Ei}_{1}\left(-2 \operatorname{arccosh}(c x)-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} a-b\right)\right) \\
& -\frac{1}{32 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(8 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}+8 x^{4} b c^{4}-4 b \sqrt{c x-1} \sqrt{c x+1} c x-8 x^{2} b c^{2}\right.\right. \\
& \left.\left.+4 \mathrm{e}^{-\frac{4 a}{b}} \operatorname{arccosh}(c x) \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) b+4 \mathrm{e}^{-\frac{4 a}{b}} \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) a+b\right)\right)
\end{aligned}
$$

Problem 87: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} x^{2}+1\right)^{3 / 2}}{(a+b \operatorname{arccosh}(c x))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 220 leaves, 11 steps):
$\frac{\cosh \left(\frac{2 a}{b}\right) \operatorname{Shi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{b^{2} c \sqrt{c x-1}}-\frac{\cosh \left(\frac{4 a}{b}\right) \operatorname{Shi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{2 b^{2} c \sqrt{c x-1}}$
$-\frac{\operatorname{Chi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{2 a}{b}\right) \sqrt{-c x+1}}{b^{2} c \sqrt{c x-1}}+\frac{\operatorname{Chi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{4 a}{b}\right) \sqrt{-c x+1}}{2 b^{2} c \sqrt{c x-1}}$

$$
-\frac{\left(-c^{2} x^{2}+1\right)^{3 / 2} \sqrt{c x-1} \sqrt{c x+1}}{b c(a+b \operatorname{arccosh}(c x))}
$$

Result(type 4, 736 leaves):
$-\frac{\sqrt{-c^{2} x^{2}+1}\left(-8 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+8 c^{5} x^{5}+8 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-12 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+4 c x\right)}{16(c x+1) c(c x-1) b(a+b \operatorname{arccosh}(c x))}$

$$
\begin{aligned}
& +\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(4 \operatorname{arccosh}(c x)+\frac{4 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+4 a}{b}}}{4(c x+1) c(c x-1) b^{2}} \\
& +\frac{1}{16 \sqrt{c x-1} \sqrt{c x+1} c b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(8 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}+8 x^{4} b c^{4}-4 b \sqrt{c x-1} \sqrt{c x+1} c x-8 x^{2} b c^{2}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+4 \mathrm{e}^{-\frac{4 a}{b}} \operatorname{arccosh}(c x) \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) b+4 \mathrm{e}^{-\frac{4 a}{b}} \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) a+b\right)\right)+\frac{3 \sqrt{-c^{2} x^{2}+1}}{8 \sqrt{c x-1} \sqrt{c x+1} c b(a+b \operatorname{arccosh}(c x))} \\
& +\frac{\sqrt{-c^{2} x^{2}+1}\left(-2 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+2 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-2 c x\right)}{4(c x+1) c(c x-1) b(a+b \operatorname{arccosh}(c x))} \\
& -\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \operatorname{Ei}_{1}\left(2 \operatorname{arccosh}(c x)+\frac{2 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+2 a}{b}}}{2(c x+1) c(c x-1) b^{2}} \\
& -\frac{1}{4 \sqrt{c x-1} \sqrt{c x+1} c b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(2 b \sqrt{c x-1} \sqrt{c x+1} c x+2 x^{2} b c^{2}+2 \operatorname{arccosh}(c x) \operatorname{Ei}_{1}(-2 \operatorname{arccosh}(c x)\right.\right. \\
& \left.\left.\left.-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} b+2 \operatorname{Ei}_{1}\left(-2 \operatorname{arccosh}(c x)-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} a-b\right)\right)
\end{aligned}
$$

Problem 90: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}\left(-c^{2} x^{2}+1\right)^{5 / 2}}{(a+b \operatorname{arccosh}(c x))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 400 leaves, 30 steps):

$$
\begin{aligned}
& \frac{\cosh \left(\frac{2 a}{b}\right) \operatorname{Shi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}+\frac{\cosh \left(\frac{4 a}{b}\right) \operatorname{Shi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{8 b^{2} c^{3} \sqrt{c x-1}} \\
& -\frac{3 \cosh \left(\frac{6 a}{b}\right) \operatorname{Shi}\left(\frac{6(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}+\frac{\cosh \left(\frac{8 a}{b}\right) \operatorname{Shi}\left(\frac{8(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}
\end{aligned}
$$

$$
-\frac{\operatorname{Chi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{2 a}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}-\frac{\operatorname{Chi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{4 a}{b}\right) \sqrt{-c x+1}}{8 b^{2} c^{3} \sqrt{c x-1}}
$$

$$
+\frac{3 \operatorname{Chi}\left(\frac{6(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{6 a}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}-\frac{\operatorname{Chi}\left(\frac{8(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{8 a}{b}\right) \sqrt{-c x+1}}{16 b^{2} c^{3} \sqrt{c x-1}}
$$

$$
-\frac{x^{2}\left(-c^{2} x^{2}+1\right)^{5 / 2} \sqrt{c x-1} \sqrt{c x+1}}{b c(a+b \operatorname{arccosh}(c x))}
$$

Result(type 4, 1675 leaves):
$\frac{1}{256(c x+1) c^{3}(c x-1) b(a+b \operatorname{arccosh}(c x))}\left(\sqrt{-c^{2} x^{2}+1}\left(-128 \sqrt{c x+1} \sqrt{c x-1} x^{8} c^{8}+128 c^{9} x^{9}+256 \sqrt{c x+1} \sqrt{c x-1} x^{6} c^{6}-320 c^{7} x^{7}\right.\right.$
$\left.\left.-160 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+272 c^{5} x^{5}+32 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-88 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+8 c x\right)\right)$
$\left.\left.-160 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+272 c^{5} x^{5}+32 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-88 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+8 c x\right)\right)$

$$
\begin{aligned}
& -\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \operatorname{Ei}_{1}\left(8 \operatorname{arccosh}(c x)+\frac{8 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+8 a}{b}}}{32 b^{2}(c x+1) c^{3}(c x-1)} \\
& -\frac{1}{256 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(128 \sqrt{c x-1} \sqrt{c x+1} x^{7} b c^{7}+128 x^{8} b c^{8}-192 \sqrt{c x-1} \sqrt{c x+1} x^{5} b c^{5}\right.\right. \\
& -256 x^{6} b c^{6}+80 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}+160 x^{4} b c^{4}-8 b \sqrt{c x-1} \sqrt{c x+1} c x-32 x^{2} b c^{2}+8 \operatorname{arccosh}(c x) \operatorname{Ei}_{1}\left(-8 \operatorname{arccosh}(c x)-\frac{8 a}{b}\right) \mathrm{e}^{-\frac{8 a}{b}} b \\
& \left.\left.+8 \operatorname{Ei}_{1}\left(-8 \operatorname{arccosh}(c x)-\frac{8 a}{b}\right) \mathrm{e}^{-\frac{8 a}{b}} a+b\right)\right)+\frac{5 \sqrt{-c^{2} x^{2}+1}}{128 \sqrt{c x-1} \sqrt{c x+1} c^{3}(a+b \operatorname{arccosh}(c x)) b} \\
& -\frac{1}{64(c x+1) c^{3}(c x-1)(a+b \operatorname{arccosh}(c x)) b}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(-32 \sqrt{c x+1} \sqrt{c x-1} x^{6} c^{6}+32 c^{7} x^{7}+48 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}-64 c^{5} x^{5}\right.\right. \\
& \left.\left.-18 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+38 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-6 c x\right)\right) \\
& +\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(6 \operatorname{arccosh}(c x)+\frac{6 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+6 a}{b}}}{32(c x+1) c^{3}(c x-1) b^{2}} \\
& +\frac{\sqrt{-c^{2} x^{2}+1}\left(-8 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+8 c^{5} x^{5}+8 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-12 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+4 c x\right)}{64(c x+1) c^{3}(c x-1)(a+b \operatorname{arccosh}(c x)) b} \\
& -\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(4 \operatorname{arccosh}(c x)+\frac{4 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+4 a}{b}}}{16(c x+1) c^{3}(c x-1) b^{2}} \\
& +\frac{\sqrt{-c^{2} x^{2}+1}\left(-2 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+2 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-2 c x\right)}{64(c x+1) c^{3}(c x-1)(a+b \operatorname{arccosh}(c x)) b} \\
& -\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \operatorname{Ei}_{1}\left(2 \operatorname{arccosh}(c x)+\frac{2 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+2 a}{b}}}{32(c x+1) c^{3}(c x-1) b^{2}} \\
& -\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(2 b \sqrt{c x-1} \sqrt{c x+1} c x+2 x^{2} b c^{2}+2 \operatorname{arccosh}(c x) \mathrm{Ei}_{1}(-2 \operatorname{arccosh}(c x)\right.\right. \\
& \left.\left.\left.-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} b+2 \operatorname{Ei}_{1}\left(-2 \operatorname{arccosh}(c x)-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} a-b\right)\right) \\
& -\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(8 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}+8 x^{4} b c^{4}-4 b \sqrt{c x-1} \sqrt{c x+1} c x-8 x^{2} b c^{2}\right.\right.
\end{aligned}
$$

$\left.\left.+4 \mathrm{e}^{-\frac{4 a}{b}} \operatorname{arccosh}(c x) \operatorname{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) b+4 \mathrm{e}^{-\frac{4 a}{b}} \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) a+b\right)\right)$
$+\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt{-c^{2} x^{2}+1}\left(32 \sqrt{c x-1} \sqrt{c x+1} x^{5} b c^{5}+32 x^{6} b c^{6}-32 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}-48 x^{4} b c^{4}\right.\right.$
$\left.\left.+6 b \sqrt{c x-1} \sqrt{c x+1} c x+18 x^{2} b c^{2}+6 \operatorname{arccosh}(c x) \mathrm{e}^{-\frac{6 a}{b}} \mathrm{Ei}_{1}\left(-6 \operatorname{arccosh}(c x)-\frac{6 a}{b}\right) b+6 \mathrm{e}^{-\frac{6 a}{b}} \mathrm{Ei}_{1}\left(-6 \operatorname{arccosh}(c x)-\frac{6 a}{b}\right) a-b\right)\right)$

Problem 91: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} x^{2}+1\right)^{5 / 2}}{(a+b \operatorname{arccosh}(c x))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 309 leaves, 14 steps):
$\frac{15 \cosh \left(\frac{2 a}{b}\right) \operatorname{Shi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{16 b^{2} c \sqrt{c x-1}}-\frac{3 \cosh \left(\frac{4 a}{b}\right) \operatorname{Shi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c x+1}}{4 b^{2} c \sqrt{c x-1}}$

$+\frac{3 \operatorname{Chi}\left(\frac{4(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{4 a}{b}\right) \sqrt{-c x+1}}{4 b^{2} c \sqrt{c x-1}}-\frac{3 \operatorname{Chi}\left(\frac{6(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{6 a}{b}\right) \sqrt{-c x+1}}{16 b^{2} c \sqrt{c x-1}}$

$$
-\frac{\left(-c^{2} x^{2}+1\right)^{5 / 2} \sqrt{c x-1} \sqrt{c x+1}}{b c(a+b \operatorname{arccosh}(c x))}
$$

Result(type 4, 1175 leaves):
$\frac{1}{64(c x+1) c(c x-1) b(a+b \operatorname{arccosh}(c x))}\left(\sqrt{-c^{2} x^{2}+1}\left(-32 \sqrt{c x+1} \sqrt{c x-1} x^{6} c^{6}+32 c^{7} x^{7}+48 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}-64 c^{5} x^{5}\right.\right.$

$$
\left.\left.-18 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+38 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-6 c x\right)\right)
$$

$-\xrightarrow{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(6 \operatorname{arccosh}(c x)+\frac{6 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+6 a}{b}}}$
$32(c x+1) c(c x-1) b^{2}$
$-\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt{-c^{2} x^{2}+1}\left(32 \sqrt{c x-1} \sqrt{c x+1} x^{5} b c^{5}+32 x^{6} b c^{6}-32 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}-48 x^{4} b c^{4}\right.\right.$
$\left.\left.+6 b \sqrt{c x-1} \sqrt{c x+1} c x+18 x^{2} b c^{2}+6 \operatorname{arccosh}(c x) \mathrm{e}^{-\frac{6 a}{b}} \operatorname{Ei}_{1}\left(-6 \operatorname{arccosh}(c x)-\frac{6 a}{b}\right) b+6 \mathrm{e}^{-\frac{6 a}{b}} \operatorname{Ei}_{1}\left(-6 \operatorname{arccosh}(c x)-\frac{6 a}{b}\right) a-b\right)\right)$

$$
\begin{aligned}
& +\frac{5 \sqrt{-c^{2} x^{2}+1}}{16 \sqrt{c x-1} \sqrt{c x+1} c b(a+b \operatorname{arccosh}(c x))} \\
& -\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-8 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+8 c^{5} x^{5}+8 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-12 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+4 c x\right)}{32(c x+1) c(c x-1) b(a+b \operatorname{arccosh}(c x))} \\
& +\frac{3 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \mathrm{Ei}_{1}\left(4 \operatorname{arccosh}(c x)+\frac{4 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+4 a}{b}}}{8(c x+1) c(c x-1) b^{2}} \\
& +\frac{15 \sqrt{-c^{2} x^{2}+1}\left(-2 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+2 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-2 c x\right)}{64(c x+1) c(c x-1) b(a+b \operatorname{arccosh}(c x))} \\
& -\underline{15 \sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \operatorname{Ei}_{1}\left(2 \operatorname{arccosh}(c x)+\frac{2 a}{b}\right) \mathrm{e}^{\frac{b \operatorname{arccosh}(c x)+2 a}{b}}} \\
& 32(c x+1) c(c x-1) b^{2} \\
& -\frac{1}{64 \sqrt{c x-1} \sqrt{c x+1} c b^{2}(a+b \operatorname{arccosh}(c x))}\left(1 5 \sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(2 b \sqrt{c x-1} \sqrt{c x+1} c x+2 x^{2} b c^{2}+2 \operatorname{arccosh}(c x) \mathrm{Ei}_{1}(-2 \operatorname{arccosh}(c x)\right.\right. \\
& \left.\left.\left.-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} b+2 \operatorname{Ei}_{1}\left(-2 \operatorname{arccosh}(c x)-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} a-b\right)\right) \\
& +\frac{1}{32 \sqrt{c x-1} \sqrt{c x+1} c b^{2}(a+b \operatorname{arccosh}(c x))}\left(3 \sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(8 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}+8 x^{4} b c^{4}-4 b \sqrt{c x-1} \sqrt{c x+1} c x-8 x^{2} b c^{2}\right.\right. \\
& \left.\left.+4 \mathrm{e}^{-\frac{4 a}{b}} \operatorname{arccosh}(c x) \operatorname{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) b+4 \mathrm{e}^{-\frac{4 a}{b}} \operatorname{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) a+b\right)\right)
\end{aligned}
$$

Problem 93: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}}{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 212 leaves, 10 steps):

Result(type 4, 757 leaves):
$-\frac{\sqrt{-c^{2} x^{2}+1}\left(-8 \sqrt{c x+1} \sqrt{c x-1} x^{4} c^{4}+8 c^{5} x^{5}+8 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}-12 c^{3} x^{3}-\sqrt{c x-1} \sqrt{c x+1}+4 c x\right)}{16\left(c^{2} x^{2}-1\right) c^{5} b(a+b \operatorname{arccosh}(c x))}$

$$
\begin{aligned}
& -\frac{\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \sqrt{-c^{2} x^{2}+1} \mathrm{Ei}_{1}\left(4 \operatorname{arccosh}(c x)+\frac{4 a}{b}\right) \mathrm{e}^{-\frac{b \operatorname{arccosh}(c x)-4 a}{b}}}{4 c^{5}\left(c^{2} x^{2}-1\right) b^{2}} \\
& +\frac{1}{16\left(c^{2} x^{2}-1\right) c^{5} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \sqrt { c x - 1 } \sqrt { c x + 1 } \left(8 b \sqrt{c x-1} \sqrt{c x+1} c^{3} x^{3}+8 x^{4} b c^{4}-4 b \sqrt{c x-1} \sqrt{c x+1} c x\right.\right. \\
& \left.\left.-8 x^{2} b c^{2}+4 \mathrm{e}^{-\frac{4 a}{b}} \operatorname{arccosh}(c x) \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) b+4 \mathrm{e}^{-\frac{4 a}{b}} \mathrm{Ei}_{1}\left(-4 \operatorname{arccosh}(c x)-\frac{4 a}{b}\right) a+b\right)\right) \\
& +\frac{3 \sqrt{-c^{2} x^{2}+1} \sqrt{c x-1} \sqrt{c x+1}}{8\left(c^{2} x^{2}-1\right) c^{5} b(a+b \operatorname{arccosh}(c x))}-\frac{\sqrt{-c^{2} x^{2}+1}\left(-2 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+2 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-2 c x\right)}{4\left(c^{2} x^{2}-1\right) c^{5} b(a+b \operatorname{arccosh}(c x))} \\
& -\frac{\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \sqrt{-c^{2} x^{2}+1} \mathrm{Ei}_{1}\left(2 \operatorname{arccosh}(c x)+\frac{2 a}{b}\right) \mathrm{e}^{-\frac{b \operatorname{arccosh}(c x)-2 a}{b}}}{2 c^{5}\left(c^{2} x^{2}-1\right) b^{2}} \\
& +\frac{1}{4\left(c^{2} x^{2}-1\right) c^{5} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \sqrt { c x - 1 } \sqrt { c x + 1 } \left(2 b \sqrt{c x-1} \sqrt{c x+1} c x+2 x^{2} b c^{2}+2 \operatorname{arccosh}(c x) \mathrm{Ei}_{1}(-2 \operatorname{arccosh}(c x)\right.\right. \\
& \left.\left.\left.-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} b+2 \mathrm{Ei}_{1}\left(-2 \operatorname{arccosh}(c x)-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} a-b\right)\right)
\end{aligned}
$$

Problem 94: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 124 leaves, 7 steps):

$$
-\frac{x^{2} \sqrt{c x-1}}{b c(a+b \operatorname{arccosh}(c x)) \sqrt{-c x+1}}+\frac{\cosh \left(\frac{2 a}{b}\right) \operatorname{Shi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{c x-1}}{b^{2} c^{3} \sqrt{-c x+1}}-\frac{\operatorname{Chi}\left(\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sinh \left(\frac{2 a}{b}\right) \sqrt{c x-1}}{b^{2} c^{3} \sqrt{-c x+1}}
$$

Result(type 4, 376 leaves):
$-\frac{\sqrt{-c^{2} x^{2}+1}\left(-2 \sqrt{c x+1} \sqrt{c x-1} x^{2} c^{2}+2 c^{3} x^{3}+\sqrt{c x-1} \sqrt{c x+1}-2 c x\right)}{4\left(c^{2} x^{2}-1\right) c^{3} b(a+b \operatorname{arccosh}(c x))}$

$$
-\frac{\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \sqrt{-c^{2} x^{2}+1} \mathrm{Ei}_{1}\left(2 \operatorname{arccosh}(c x)+\frac{2 a}{b}\right) \mathrm{e}^{-\frac{b \operatorname{arccosh}(c x)-2 a}{b}}}{2 c^{3}\left(c^{2} x^{2}-1\right) b^{2}}
$$

$$
\begin{aligned}
& +\frac{1}{4\left(c^{2} x^{2}-1\right) c^{3} b^{2}(a+b \operatorname{arccosh}(c x))}\left(\sqrt { c x + 1 } \sqrt { c x - 1 } \sqrt { - c ^ { 2 } x ^ { 2 } + 1 } \left(2 b \sqrt{c x-1} \sqrt{c x+1} c x+2 x^{2} b c^{2}+2 \operatorname{arccosh}(c x) \mathrm{Ei}_{1}(-2 \operatorname{arccosh}(c x)\right.\right. \\
& \left.\left.\left.-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} b+2 \operatorname{Ei}_{1}\left(-2 \operatorname{arccosh}(c x)-\frac{2 a}{b}\right) \mathrm{e}^{-\frac{2 a}{b}} a-b\right)\right)+\frac{\sqrt{c x+1} \sqrt{c x-1} \sqrt{-c^{2} x^{2}+1}}{2\left(c^{2} x^{2}-1\right) c^{3} b(a+b \operatorname{arccosh}(c x))}
\end{aligned}
$$

Problem 95: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 118 leaves, 5 steps):

Result(type 4, 282 leaves):

$$
\begin{aligned}
& -\frac{\sqrt{-c^{2} x^{2}+1}\left(-\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right)}{2\left(c^{2} x^{2}-1\right) c^{2} b(a+b \operatorname{arccosh}(c x))}-\frac{\left(\sqrt{c x-1} \sqrt{c x+1} x c+c^{2} x^{2}-1\right) \sqrt{-c^{2} x^{2}+1} \operatorname{Ei}_{1}\left(\operatorname{arccosh}(c x)+\frac{a}{b}\right) \mathrm{e}-\frac{b \operatorname{arccosh}(c x)-a}{b}}{2 c^{2}\left(c^{2} x^{2}-1\right) b^{2}} \\
& \quad+\frac{\sqrt{c x+1} \sqrt{c x-1} \sqrt{-c^{2} x^{2}+1}\left(\mathrm{e}^{-\frac{a}{b}} \operatorname{Ei}_{1}\left(-\operatorname{arccosh}(c x)-\frac{a}{b}\right) \operatorname{arccosh}(c x) b+\mathrm{e}^{-\frac{a}{b}} \operatorname{Ei}_{1}\left(-\operatorname{arccosh}(c x)-\frac{a}{b}\right) a+\sqrt{c x-1} \sqrt{c x+1} b+b c x\right)}{2\left(c^{2} x^{2}-1\right) c^{2} b^{2}(a+b \operatorname{arccosh}(c x))}
\end{aligned}
$$

Problem 103: Unable to integrate problem.

$$
\int \sqrt{-a^{2} c x^{2}+c} \sqrt{\operatorname{arccosh}(a x)} \mathrm{d} x
$$

Optimal(type 4, 159 leaves, 10 steps):
$-\frac{\operatorname{arccosh}(a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{3 a \sqrt{a x-1} \sqrt{a x+1}}+\frac{\operatorname{erf}(\sqrt{2} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{32 a \sqrt{a x-1} \sqrt{a x+1}}-\frac{\operatorname{erfi}(\sqrt{2} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{32 a \sqrt{a x-1} \sqrt{a x+1}}$

$$
+\frac{x \sqrt{-a^{2} c x^{2}+c} \sqrt{\operatorname{arccosh}(a x)}}{2}
$$

Result(type 8, 22 leaves):

$$
\int \sqrt{-a^{2} c x^{2}+c} \sqrt{\operatorname{arccosh}(a x)} \mathrm{d} x
$$

$$
\int\left(-a^{2} c x^{2}+c\right)^{3 / 2} \operatorname{arccosh}(a x)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 462 leaves, 41 steps):
$\frac{x\left(-a^{2} c x^{2}+c\right)^{3 / 2} \operatorname{arccosh}(a x)^{5 / 2}}{4}+\frac{3 c x \operatorname{arccosh}(a x)^{5 / 2} \sqrt{-a^{2} c x^{2}+c}}{8}+\frac{45 c \operatorname{arccosh}(a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{256 a \sqrt{a x-1} \sqrt{a x+1}}-\frac{15 a c x^{2} \operatorname{arccosh}(a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{32 \sqrt{a x-1} \sqrt{a x+1}}$

$$
\begin{aligned}
& +\frac{5 c\left(-a^{2} x^{2}+1\right)^{2} \operatorname{arccosh}(a x)^{3 / 2} \sqrt{-a^{2} c x^{2}+c}}{32 a \sqrt{a x-1} \sqrt{a x+1}}-\frac{3 c \operatorname{arccosh}(a x)^{7 / 2} \sqrt{-a^{2} c x^{2}+c}}{28 a \sqrt{a x-1} \sqrt{a x+1}}+\frac{15 c \operatorname{erf}\left(\sqrt{2} \sqrt{\operatorname{arccosh(ax)}) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}\right.}{512 a \sqrt{a x-1} \sqrt{a x+1}} \\
& -\frac{15 c \operatorname{erfi}(\sqrt{2} \sqrt{\operatorname{arccosh(ax)}}) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{512 a \sqrt{a x-1} \sqrt{a x+1}}-\frac{15 c \operatorname{erf}(2 \sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{16384 a \sqrt{a x-1} \sqrt{a x+1}} \\
& +\frac{15 c \operatorname{erfi}(2 \sqrt{\operatorname{arccosh}(a x)}) \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{16384 a \sqrt{a x-1} \sqrt{a x+1}}+\frac{225 c x \sqrt{-a^{2} c x^{2}+c} \sqrt{\operatorname{arccosh}(a x)}}{512}+\frac{15 c x(-a x+1)(a x+1) \sqrt{-a^{2} c x^{2}+c} \sqrt{\operatorname{arccosh}(a x)}}{256}
\end{aligned}
$$

Result(type 8, 22 leaves):

$$
\int\left(-a^{2} c x^{2}+c\right)^{3 / 2} \operatorname{arccosh}(a x)^{5 / 2} \mathrm{~d} x
$$

Problem 108: Unable to integrate problem.

Optimal(type 4, 45 leaves, 6 steps):

$$
\frac{\operatorname{erf}(\sqrt{\operatorname{arccosh}(x)}) \sqrt{\pi} \sqrt{-1+x}}{2 \sqrt{1-x}}+\frac{\operatorname{erfi}(\sqrt{\operatorname{arccosh}(x)}) \sqrt{\pi} \sqrt{-1+x}}{2 \sqrt{1-x}}
$$

Result(type 8, 17 leaves):

$$
\int \frac{x}{\sqrt{-x^{2}+1} \sqrt{\operatorname{arccosh}(x)}} \mathrm{d} x
$$

Problem 111: Unable to integrate problem.

$$
\int \frac{\sqrt{-a^{2} c x^{2}+c}}{\operatorname{arccosh}(a x)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 159 leaves, 7 steps):
$\frac{2 \operatorname{erf}(\sqrt{2} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{3 a \sqrt{a x-1} \sqrt{a x+1}}+\frac{2 \operatorname{erfi}(\sqrt{2} \sqrt{\operatorname{arccosh}(a x)}) \sqrt{2} \sqrt{\pi} \sqrt{-a^{2} c x^{2}+c}}{3 a \sqrt{a x-1} \sqrt{a x+1}}-\frac{2 \sqrt{a x-1} \sqrt{a x+1} \sqrt{-a^{2} c x^{2}+c}}{3 a \operatorname{arccosh}(a x)^{3 / 2}}$
$-\frac{8 x \sqrt{-a^{2} c x^{2}+c}}{3 \sqrt{\operatorname{arccosh}(a x)}}$
Result(type 8, 22 leaves):

$$
\int \frac{\sqrt{-a^{2} c x^{2}+c}}{\operatorname{arccosh}(a x)^{5 / 2}} \mathrm{~d} x
$$

Problem 112: Unable to integrate problem.

$$
\int x(a+b \operatorname{arccosh}(c x))^{n} \sqrt{-c^{2} d x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 352 leaves, 9 steps):
$\frac{3^{-1-n}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n,-\frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{8 c^{2} \mathrm{e}^{\frac{3 a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}}-\frac{(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{-a-b \operatorname{arccosh}(c x)}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{8 c^{2} \mathrm{e}^{\frac{a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}}$
$+\frac{\mathrm{e}^{\frac{a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{a+b \operatorname{arccosh}(c x)}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{8 c^{2}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}}$
$-\frac{3^{-1-n} \mathrm{e}^{\frac{3 a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{8}$ $8 c^{2}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}$
Result(type 8, 27 leaves):

$$
\int x(a+b \operatorname{arccosh}(c x))^{n} \sqrt{-c^{2} d x^{2}+d} \mathrm{~d} x
$$

Problem 115: Unable to integrate problem.

$$
\int x\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))^{n} \mathrm{~d} x
$$

Optimal(type 4, 738 leaves, 15 steps):
$7^{-1-n} d^{2}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n,-\frac{7(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}$ $128 c^{2} \mathrm{e}^{\frac{7 a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}$

$$
\begin{aligned}
& -\frac{d^{2}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n,-\frac{5(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{1285^{n} c^{2} \mathrm{e}^{\frac{5 a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{3^{1-n} d^{2}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n,-\frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2} \mathrm{e}^{\frac{3 a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{5 d^{2}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{-a-b \operatorname{arccosh}(c x)}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2} \mathrm{e}^{\frac{a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{5 d^{2} \mathrm{e}^{\frac{a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{a+b \operatorname{arccosh}(c x)}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{128 c^{2}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{3 a}{3^{1-n} d^{2} \mathrm{e}^{\frac{3 a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{128 c^{2}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}}{b-e^{2}} \\
& +\frac{7^{2} \mathrm{e}^{\frac{5 a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{5(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{-c^{2} d x^{2}+d}}{1285^{n} c^{2}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{7 a}{b}\left(a+b \operatorname{arccosh(cx))^{n}\Gamma (1+n,\frac {7(a+b\operatorname {arccosh}(cx))}{b})\sqrt {-c^{2}dx^{2}+d}}\right. \\
& \hline
\end{aligned}
$$

Result(type 8, 27 leaves):

$$
\int x\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))^{n} \mathrm{~d} x
$$

Problem 117: Unable to integrate problem.

$$
\int \frac{x^{3}(a+b \operatorname{arccosh}(c x))^{n}}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 304 leaves, 9 steps):
$\frac{3^{-1-n}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n,-\frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{c x-1}}{8 c^{4} \mathrm{e}^{\frac{3 a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c x+1}}+\frac{3(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{-a-b \operatorname{arccosh}(c x)}{b}\right) \sqrt{c x-1}}{8 c^{4} \mathrm{e}^{\frac{a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c x+1}}$
$-\frac{3 \mathrm{e}^{\frac{a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{a+b \operatorname{arccosh}(c x)}{b}\right) \sqrt{c x-1}}{8 c^{4}(a+b \operatorname{arccosh}(c x))^{n} \sqrt{-a x+1}}$
$-\frac{3^{-1-n} \mathrm{e}^{\frac{3 a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{3(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{c x-1}}{}$

$$
8 c^{4}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c x+1}
$$

Result(type 8, 28 leaves):

$$
\int \frac{x^{3}(a+b \operatorname{arccosh}(c x))^{n}}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Problem 118: Unable to integrate problem.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))^{n}}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 199 leaves, 6 steps):
$\frac{(a+b \operatorname{arccosh}(c x))^{1+n} \sqrt{c x-1}}{2 b c^{3}(1+n) \sqrt{-c x+1}}+\frac{2^{-3-n}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n,-\frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{c x-1}}{c^{3} \mathrm{e}^{\frac{2 a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c x+1}}$

$$
-\frac{2^{-3-n} \mathrm{e}^{\frac{2 a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{2(a+b \operatorname{arccosh}(c x))}{b}\right) \sqrt{c x-1}}{-}
$$

$$
c^{3}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c x+1}
$$

Result(type 8, 28 leaves):

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))^{n}}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Problem 120: Unable to integrate problem.

$$
\int \frac{x(a+b \operatorname{arccosh}(c x))^{n}}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 4, 169 leaves, 4 steps):

$$
\frac{(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{-a-b \operatorname{arccosh}(c x)}{b}\right) \sqrt{c x-1} \sqrt{c x+1}}{2 c^{2} \mathrm{e}^{\frac{a}{b}}\left(\frac{-a-b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c^{2} d x^{2}+d}}-\frac{\mathrm{e}^{\frac{a}{b}}(a+b \operatorname{arccosh}(c x))^{n} \Gamma\left(1+n, \frac{a+b \operatorname{arccosh}(c x)}{b}\right) \sqrt{c x-1} \sqrt{c x+1}}{2 c^{2}\left(\frac{a+b \operatorname{arccosh}(c x)}{b}\right)^{n} \sqrt{-c^{2} d x^{2}+d}}
$$

Result(type 8, 27 leaves):

$$
\int \frac{x(a+b \operatorname{arccosh}(c x))^{n}}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Problem 134: Result is not expressed in closed-form.

$$
\int \frac{x^{4}(a+b \operatorname{arccosh}(c x))}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 617 leaves, 27 steps):

$$
\begin{aligned}
& -\frac{a d x}{e^{2}}-\frac{b d x \operatorname{arccosh}(c x)}{e^{2}}+\frac{x^{3}(a+b \operatorname{arccosh}(c x))}{3 e}+\frac{(-d)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}} \\
& -\frac{(-d)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}}+\frac{(-d)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}} \\
& -\frac{(-d)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}}-\frac{b(-d)^{3 / 2} \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}} \\
& +\frac{b(-d)^{3 / 2} \operatorname{polylog}\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}}-\frac{b(-d)^{3 / 2} \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}} \\
& +\frac{b(-d)^{3 / 2} \operatorname{polylog}\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e^{5 / 2}}+\frac{b d \sqrt{c x-1} \sqrt{c x+1}}{c e^{2}}-\frac{2 b \sqrt{c x-1} \sqrt{c x+1}}{9 c^{3} e}-\frac{b x^{2} \sqrt{c x-1} \sqrt{c x+1}}{9 c e}
\end{aligned}
$$

Result(type 7, 363 leaves):

$$
\begin{aligned}
& \frac{a x^{3}}{3 e}-\frac{a d x}{e^{2}}+\frac{a d^{2} \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{e^{2} \sqrt{d e}}-\frac{b d x \operatorname{arccosh}(c x)}{e^{2}}+\frac{b \operatorname{arccosh}(c x) x^{3}}{3 e}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{c b d^{2}\left(\sum_{R 1=\operatorname{RootOf}(e} Z^{4}+\left(4 c^{2} d+2 e\right) Z^{2}+e\right)}{} \frac{\operatorname{arccosh}(c x) \ln \left(\frac{R 1-c x-\sqrt{c x-1} \sqrt{c x+1}}{R 1}\right)+\operatorname{dilog}\left(\frac{R 1-c x-\sqrt{c x-1} \sqrt{c x+1}}{R 1}\right)}{2 e^{2}} \\
& -\frac{b x^{2} \sqrt{c x-1} \sqrt{c x+1}}{9 c e}+\frac{b d \sqrt{c x-1} \sqrt{c x+1}}{c e^{2}}-\frac{2 b \sqrt{c x-1} \sqrt{c x+1}}{9 c^{3} e}
\end{aligned}
$$

Problem 135: Result is not expressed in closed-form.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))}{e x^{2}+d} d x
$$

Optimal(type 4, 548 leaves, 23 steps):

$$
\begin{aligned}
& \frac{a x}{e}+\frac{b x \operatorname{arccosh}(c x)}{e}+\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}} \\
& -\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}}+\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}} \\
& -\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}}-\frac{b \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}} \\
& +\frac{b \operatorname{polylog}\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}}-\frac{b \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}} \\
& +\frac{b \text { polylog }\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right) \sqrt{-d}}{2 e^{3 / 2}}-\frac{b \sqrt{c x-1} \sqrt{c x+1}}{c e}
\end{aligned}
$$

Result(type 7, 283 leaves):
$\frac{a x}{e}-\frac{a d \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{e \sqrt{d e}}-\frac{b \sqrt{c x-1} \sqrt{c x+1}}{c e}+\frac{b x \operatorname{arccosh}(c x)}{e}$

Problem 136: Result is not expressed in closed-form.

$$
\int \frac{x(a+b \operatorname{arccosh}(c x))}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 487 leaves, 18 steps):
$-\frac{(a+b \operatorname{arccosh}(c x))^{2}}{2 b e}+\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e}$

$$
+\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e}+\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e}
$$

$$
+\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e}+\frac{b \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e}
$$

$$
+\frac{b \text { polylog }\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{2 e}+\frac{b \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e}
$$

$$
+\frac{b \text { polylog }\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{2 e}
$$

Result(type 7, 371 leaves):
$\frac{a \ln \left(c^{2} e x^{2}+c^{2} d\right)}{2 e}-\frac{b \operatorname{arccosh}(c x)^{2}}{2 e}+\frac{1}{2 e}(b)$

$$
-\frac{b\left(\sum_{R I=\text { Rootof }(e} \sum_{Z^{4}+\left(4 c^{2} d+2 e\right)} Z^{2}+e\right)}{} \frac{\operatorname{arccosh}(c x) \ln \left(\frac{R I-c x-\sqrt{c x-1} \sqrt{c x+1}}{R I}\right)+\operatorname{dilog}\left(\frac{R I-c x-\sqrt{c x-1} \sqrt{c x+1}}{R I}\right)}{\left.-^{R I^{2} e+2 c^{2} d+e}\right)}
$$

$$
\left.-\frac{c^{2} b d\left(\sum_{R l=\text { Rootof }\left(e z^{4}+\left(4 c^{2} d+2 e\right)\right.} z^{2}+e\right)}{} \frac{\operatorname{arccosh}(c x) \ln \left(-\frac{R l-c x-\sqrt{c x-1} \sqrt{c x+1}}{}\right)+\operatorname{dilog}\left(-\frac{R 1-c x-\sqrt{c x-1} \sqrt{c x+1}}{-R I}\right)}{-R l^{2} e+2 c^{2} d+e}\right)
$$

Problem 137: Result is not expressed in closed-form.

$$
\int \frac{x^{2}(a+b \operatorname{arccosh}(c x))}{\left(e x^{2}+d\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 723 leaves, 46 steps):

$$
\begin{aligned}
& \frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}}-\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}} \\
& +\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}}-\frac{(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}} \\
& -\frac{b \text { polylog }\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}}+\frac{b \operatorname{polylog}\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}-\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\left(_R I^{2} e+4 c^{2} d+2 e\right)\left(\operatorname{arccosh}(c x) \ln \left(\frac{R l-c x-\sqrt{c x-1} \sqrt{c x+1}}{R l}\right)+\operatorname{dilog}\left(\frac{R I-c x-\sqrt{c x-1} \sqrt{c x+1}}{R l}\right)\right)}{\left.-^{R I^{2} e+2 c^{2} d+e}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{b \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2} \sqrt{-d}}+\frac{b \operatorname{polylog}\left(2, \frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) \sqrt{e}}{c \sqrt{-d}+\sqrt{-c^{2} d-e}}\right)}{4 e^{3 / 2 \sqrt{-d}}+\frac{a+b \operatorname{arccosh}(c x)}{4 e^{3 / 2}(\sqrt{-d}-x \sqrt{e})}} \\
& +\frac{-a-b \operatorname{arccosh}(c x)}{4 e^{3 / 2}(\sqrt{-d}+x \sqrt{e})}-\frac{b c \operatorname{arctanh}\left(\frac{\sqrt{c x+1} \sqrt{c \sqrt{-d}-\sqrt{e}}}{2 e^{3 / 2} \sqrt{c \sqrt{-d}-\sqrt{e}} \sqrt{c \sqrt{-d}+\sqrt{e}}}\right) \quad b c \operatorname{arctanh}\left(\frac{\sqrt{c x+1} \sqrt{c \sqrt{-d}+\sqrt{e}}}{\sqrt{c x-1} \sqrt{c \sqrt{-d}-\sqrt{e}}}\right)}{2 e^{3 / 2 \sqrt{c \sqrt{-d}-\sqrt{e}} \sqrt{c \sqrt{-d}+\sqrt{e}}}}
\end{aligned}
$$

Result(type 7, 1688 leaves):

$$
\begin{aligned}
& -\frac{c^{2} a x}{2 e\left(c^{2} e x^{2}+c^{2} d\right)}+\frac{a \arctan \left(\frac{x e}{\sqrt{d e}}\right)}{2 e \sqrt{d e}}-\frac{c^{2} b \operatorname{arccosh}(c x) x}{2 e\left(c^{2} e x^{2}+c^{2} d\right)} \\
& -\frac{c^{5} b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right) d^{2}}{e^{4}\left(c^{2} d+e\right)}
\end{aligned}
$$

$$
\frac{c^{3} b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right) \sqrt{c^{2} d\left(c^{2} d+e\right)} d}{e^{4}\left(c^{2} d+e\right)}
$$

$$
-\frac{c^{3} b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right) d}{e^{3}\left(c^{2} d+e\right)}
$$

$$
-\frac{c b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right) \sqrt{c^{2} d\left(c^{2} d+e\right)}}{2 e^{3}\left(c^{2} d+e\right)}
$$

$$
\begin{aligned}
& \frac{c^{3} b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right) d}{e^{4}} \\
&+ c b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right) \sqrt{c^{2} d\left(c^{2} d+e\right)} \\
& e^{4}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{c b \sqrt{-\left(2 c^{2} d-2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \operatorname{arctanh}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(-2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}-e\right) e}}\right)}{2 e^{3}} \\
& c^{5} b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right) d^{2} \\
& e^{4}\left(c^{2} d+e\right) \\
& +\frac{c^{3} b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right) \sqrt{c^{2} d\left(c^{2} d+e\right)} d}{e^{4}\left(c^{2} d+e\right)} \\
& \frac{c^{3} b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right) d}{e^{3}\left(c^{2} d+e\right)} \\
& +\frac{c b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right) \sqrt{c^{2} d\left(c^{2} d+e\right)}}{2 e^{3}\left(c^{2} d+e\right)} \\
& +\frac{c^{3} b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right) d}{e^{4}} \\
& -\frac{c b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right) \sqrt{c^{2} d\left(c^{2} d+e\right)}}{e^{4}} \\
& +\frac{c b \sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e} \arctan \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) e}{\sqrt{\left(2 c^{2} d+2 \sqrt{c^{2} d\left(c^{2} d+e\right)}+e\right) e}}\right)}{2 e^{3}}
\end{aligned}
$$

$4 e$

Problem 138: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}(a+b \operatorname{arccosh}(c x))}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 197 leaves, 9 steps):

$$
\begin{aligned}
& \frac{x^{4}(a+b \operatorname{arccosh}(c x))}{4 d\left(e x^{2}+d\right)^{2}}-\frac{b c x\left(-c^{2} x^{2}+1\right)}{8 e\left(c^{2} d+e\right)\left(e x^{2}+d\right) \sqrt{c x-1} \sqrt{c x+1}}-\frac{b \arcsin (c x) \sqrt{-c^{2} x^{2}+1}}{4 d e^{2} \sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{b c\left(2 c^{2} d+3 e\right) \arctan \left(\frac{x \sqrt{c^{2} d+e}}{\sqrt{d} \sqrt{-c^{2} x^{2}+1}}\right) \sqrt{-c^{2} x^{2}+1}}{8 e^{2}\left(c^{2} d+e\right)^{3 / 2} \sqrt{d} \sqrt{c x-1} \sqrt{c x+1}}
\end{aligned}
$$

Result(type ?, 2498 leaves): Display of huge result suppressed!
Problem 140: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Optimal(type 5, 184 leaves, 5 steps):

$$
\begin{array}{r}
\frac{d(f x)^{1+m}(a+b \operatorname{arccosh}(c x))}{f(1+m)}+\frac{e(f x)^{3+m}(a+b \operatorname{arccosh}(c x))}{f^{3}(3+m)}-\frac{b e(f x)^{2+m} \sqrt{c x-1} \sqrt{c x+1}}{c f^{2}(3+m)^{2}} \\
-\frac{b\left(e(1+m)(2+m)+c^{2} d(3+m)^{2}\right)(f x)^{2+m} \operatorname{hypergeom}\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}{c f^{2}(1+m)(2+m)(3+m)^{2} \sqrt{c x-1} \sqrt{c x+1}}
\end{array}
$$

Result(type 8, 23 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Problem 148: Unable to integrate problem.

$$
\int \sqrt{a+b \operatorname{arccosh}(c x)} \mathrm{d} x
$$

Optimal (type 4, 79 leaves, 7 steps):

Result(type 8, 12 leaves):

$$
\int \sqrt{a+b \operatorname{arccosh}(c x)} \mathrm{d} x
$$

Problem 151: Unable to integrate problem.

$$
\int(a+b \operatorname{arccosh}(c x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 109 leaves, 8 steps):
$x(a+b \operatorname{arccosh}(c x))^{3 / 2}-\frac{3 b^{3 / 2} \mathrm{e}^{\frac{a}{b}} \operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{\pi}}{8 c}+\frac{3 b^{3 / 2} \operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}(c x)}}{\sqrt{b}}\right) \sqrt{\pi}}{8 c \mathrm{e}^{\frac{a}{b}}}$

$$
-\frac{3 b \sqrt{c x-1} \sqrt{c x+1} \sqrt{a+b \operatorname{arccosh}(c x)}}{2 c}
$$

Result(type 8, 12 leaves):

$$
\int(a+b \operatorname{arccosh}(c x))^{3 / 2} \mathrm{~d} x
$$

Test results for the 79 problems in "7.2.5 Inverse hyperbolic cosine functions.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{3} \operatorname{arccosh}(c x) \mathrm{d} x
$$

Optimal(type 3, 161 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{\left(8 d^{4} c^{4}+24 c^{2} d^{2} e^{2}+3 e^{4}\right) \operatorname{arccosh}(c x)}{32 c^{4} e}+\frac{(e x+d)^{4} \operatorname{arccosh}(c x)}{4 e}-\frac{7 d(e x+d)^{2} \sqrt{c x-1} \sqrt{c x+1}}{48 c}-\frac{(e x+d)^{3} \sqrt{c x-1} \sqrt{c x+1}}{16 c} \\
& -\frac{\left(4 d\left(19 c^{2} d^{2}+16 e^{2}\right)+e\left(26 c^{2} d^{2}+9 e^{2}\right) x\right) \sqrt{c x-1} \sqrt{c x+1}}{96 c^{3}}
\end{aligned}
$$

Result(type 3, 350 leaves):
$\frac{e^{3} \operatorname{arccosh}(c x) x^{4}}{4}+e^{2} \operatorname{arccosh}(c x) x^{3} d+\frac{3 e \operatorname{arccosh}(c x) x^{2} d^{2}}{2}+\operatorname{arccosh}(c x) x d^{3}+\frac{\operatorname{arccosh}(c x) d^{4}}{4 e}-\frac{e^{3} \sqrt{c x-1} \sqrt{c x+1} x^{3}}{16 c}$

$$
\begin{aligned}
& -\frac{e^{2} \sqrt{c x-1} \sqrt{c x+1} x^{2} d}{3 c}-\frac{3 e \sqrt{c x-1} \sqrt{c x+1} d^{2} x}{4 c}-\frac{\sqrt{c x-1} \sqrt{c x+1} d^{4} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{4 e \sqrt{c^{2} x^{2}-1}}-\frac{\sqrt{c x-1} \sqrt{c x+1} d^{3}}{c} \\
& -\frac{3 e^{3} \sqrt{c x-1} \sqrt{c x+1} x}{32 c^{3}}-\frac{3 e \sqrt{c x-1} \sqrt{c x+1} d^{2} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{4 c^{2} \sqrt{c^{2} x^{2}-1}}-\frac{2 e^{2} \sqrt{c x-1} \sqrt{c x+1} d}{3 c^{3}} \\
& -\frac{3 e^{3} \sqrt{c x-1} \sqrt{c x+1} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{32 c^{4} \sqrt{c^{2} x^{2}-1}}
\end{aligned}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccosh}(c x)}{(e x+d)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 167 leaves, 6 steps):

$$
-\frac{\operatorname{arccosh}(c x)}{3 e(e x+d)^{3}}+\frac{c^{3}\left(2 c^{2} d^{2}+e^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{d c+e} \sqrt{c x+1}}{\sqrt{d c-e} \sqrt{c x-1}}\right)}{3(d c-e)^{5 / 2} e(d c+e)^{5 / 2}}-\frac{c \sqrt{c x-1} \sqrt{c x+1}}{6\left(c^{2} d^{2}-e^{2}\right)(e x+d)^{2}}-\frac{c^{3} d \sqrt{c x-1} \sqrt{c x+1}}{2(d c-e)^{2}(d c+e)^{2}(e x+d)}
$$

Result(type 3, 1107 leaves):
$-\frac{c^{3} \operatorname{arccosh}(c x)}{3(c x e+d c)^{3} e}-\frac{c^{7} \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)}{c x e+d c}\right) x^{2} d^{2}}{3 \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}(c x e+d c)^{2}}$
$-\frac{2 c^{7} \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)}{3 e \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}(c x e+d c)^{2}}-\frac{c^{5} e \sqrt{c x-1} \sqrt{c x+1} x d}{2(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right)(c x e+d c)^{2}}\right.}{3}$
$-\frac{c^{5} e^{2} \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)}{6 \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}(c x e+d c)^{2}}\right) x^{2}}{6}$

$$
\begin{aligned}
& -\frac{c^{7} \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)}{c x e+d c}\right) d^{4}}{3 e^{2} \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}(c x e+d c)^{2}}-\frac{2 c^{5} \sqrt{c x-1} \sqrt{c x+1} d^{2}}{3(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right)(c x e+d c)^{2}} \\
& -\frac{c^{5} e \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)}{c x e+d c}\right) x d}{3 \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}(c x e+d c)^{2}} \\
& \left.-\frac{\left.2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)\right)}{c x e+d c}\right) d^{2} \\
& 6 \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{c^{2} x^{2}-1}{(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}(c x e+d c)^{2}}+\frac{c^{3} e^{2} \sqrt{c x-1} \sqrt{c x+1}}{6(d c+e)(d c-e)\left(c^{2} d^{2}-e^{2}\right)(c x e+d c)^{2}}\right.
\end{aligned}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{2}(a+b \operatorname{arccosh}(c x)) \mathrm{d} x
$$

Optimal(type 3, 115 leaves, 4 steps):
$-\frac{b d\left(2 d^{2}+\frac{3 e^{2}}{c^{2}}\right) \operatorname{arccosh}(c x)}{6 e}+\frac{(e x+d)^{3}(a+b \operatorname{arccosh}(c x))}{3 e}-\frac{b(e x+d)^{2} \sqrt{c x-1} \sqrt{c x+1}}{9 c}-\frac{b\left(5 c^{2} d e x+16 c^{2} d^{2}+4 e^{2}\right) \sqrt{c x-1} \sqrt{c x+1}}{18 c^{3}}$
Result(type 3, 273 leaves):
$\frac{a e^{2} x^{3}}{3}+a e x^{2} d+a x d^{2}+\frac{a d^{3}}{3 e}+\frac{b e^{2} \operatorname{arccosh}(c x) x^{3}}{3}+b e \operatorname{arccosh}(c x) x^{2} d+d^{2} b \operatorname{arccosh}(c x) x+\frac{b \operatorname{arccosh}(c x) d^{3}}{3 e}$
$-\frac{b \sqrt{c x-1} \sqrt{c x+1} d^{3} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{3 e \sqrt{c^{2} x^{2}-1}}-\frac{b e^{2} \sqrt{c x-1} \sqrt{c x+1} x^{2}}{9 c}-\frac{b e \sqrt{c x-1} \sqrt{c x+1} d x}{2 c}-\frac{d^{2} b \sqrt{c x-1} \sqrt{c x+1}}{c}$
$-\frac{b e \sqrt{c x-1} \sqrt{c x+1} d \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{2 c^{2} \sqrt{c^{2} x^{2}-1}}-\frac{2 b e^{2} \sqrt{c x-1} \sqrt{c x+1}}{9 c^{3}}$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{(e x+d)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 121 leaves, 4 steps):

$$
\frac{-a-b \operatorname{arccosh}(c x)}{2 e(e x+d)^{2}}+\frac{b c^{3} d \operatorname{arctanh}\left(\frac{\sqrt{d c+e} \sqrt{c x+1}}{\sqrt{d c-e} \sqrt{c x-1}}\right)}{(d c-e)^{3 / 2} e(d c+e)^{3 / 2}}-\frac{b c \sqrt{c x-1} \sqrt{c x+1}}{2\left(c^{2} d^{2}-e^{2}\right)(e x+d)}
$$

Result(type 3, 360 leaves):

$$
\begin{aligned}
& -\frac{c^{2} a}{2(c x e+d c)^{2} e}-\frac{c^{2} b \operatorname{arccosh}(c x)}{2(c x e+d c)^{2} e}-\frac{c^{4} b \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)}{c x e+d c}\right) x d}{2 e \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)(c x e+d c) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}} \\
& -\frac{c^{4} b \sqrt{c x-1} \sqrt{c x+1} \ln \left(-\frac{\left.2\left(x c^{2} d-\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e+e\right)\right)}{c x e+d c} d^{2}\right.}{2 e^{2} \sqrt{c^{2} x^{2}-1}(d c+e)(d c-e)(c x e+d c) \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}}-\frac{c^{2} b \sqrt{c x-1} \sqrt{c x+1}}{2(d c+e)(d c-e)(c x e+d c)}
\end{aligned}
$$

Problem 15: Result is not expressed in closed-form.

$$
\int \frac{\operatorname{arccosh}(a x)}{x^{2} d+c} \mathrm{~d} x
$$

Optimal(type 4, 489 leaves, 18 steps):
$\frac{\operatorname{arccosh}(a x) \ln \left(1-\frac{(a x+\sqrt{a x-1} \sqrt{a x+1}) \sqrt{d}}{a \sqrt{-c}-\sqrt{-a^{2} c-d}}\right)}{2 \sqrt{-c} \sqrt{d}}-\frac{\operatorname{arccosh}(a x) \ln \left(1+\frac{(a x+\sqrt{a x-1} \sqrt{a x+1}) \sqrt{d}}{a \sqrt{-c}-\sqrt{-a^{2} c-d}}\right)}{2 \sqrt{-c} \sqrt{d}}$

Result(type 7, 213 leaves):
$\left.a\left(\sum_{R 1=\operatorname{RootOf}\left(d Z^{4}+\left(4 a^{2} c+2 d\right)\right.} Z^{2}+d\right) \quad \frac{-R 1\left(\operatorname{arccosh}(a x) \ln \left(\frac{R 1-a x-\sqrt{a x-1} \sqrt{a x+1}}{R 1}\right)+\operatorname{dilog}\left(\frac{R 1-a x-\sqrt{a x-1} \sqrt{a x+1}}{R 1}\right)\right)}{R l^{2} d+2 a^{2} c+d}\right)$

Problem 17: Unable to integrate problem.

$$
\int \frac{\operatorname{arccosh}(a x)}{\left(x^{2} d+c\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 80 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{a^{2} x^{2}-1}}{a \sqrt{x^{2} d+c}}\right) \sqrt{a^{2} x^{2}-1}}{c \sqrt{d} \sqrt{a x-1} \sqrt{a x+1}}+\frac{x \operatorname{arccosh}(a x)}{c \sqrt{x^{2} d+c}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{\operatorname{arccosh}(a x)}{\left(x^{2} d+c\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-c^{2} d x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccosh}(c x))}{g x+f} \mathrm{~d} x
$$

Optimal(type 4, 1608 leaves, 39 steps):

$$
\begin{aligned}
& -\frac{d^{2}\left(c^{2} f^{2}-g^{2}\right)^{2}\left(-c^{2} x^{2}+1\right)(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b c g^{4}(g x+f) \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{3} d^{2} f\left(c^{2} f^{2}-2 g^{2}\right) x^{2} \sqrt{-c^{2} d x^{2}+d}}{4 g^{4} \sqrt{c x-1} \sqrt{c x+1}} \\
& \quad+\frac{c d^{2} f\left(c^{2} f^{2}-2 g^{2}\right)(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{4 b g^{4} \sqrt{c x-1} \sqrt{c x+1}}-\frac{c d^{2}\left(c^{2} f^{2}-g^{2}\right)^{2} x(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b g^{5} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{d^{2}\left(c^{2} f^{2}-g^{2}\right)^{3}(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{2 b c g^{6}(g x+f) \sqrt{c x-1} \sqrt{c x+1}}+\frac{c^{2} d^{2} f x(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{8 g^{2}}-\frac{c^{4} d^{2} f x^{3}(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{4 g^{2}} \\
& \\
& -\frac{d^{2}\left(c^{2} f^{2}-2 g^{2}\right)(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{3 g^{3}}+\frac{b d^{2}\left(c^{2} f^{2}-g^{2}\right)^{2} \operatorname{arccosh}(c x) \sqrt{-c^{2} d x^{2}+d}}{g^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2 d^{2}(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{15 g}+\frac{a d^{2}\left(c^{2} f^{2}-g^{2}\right)^{2}\left(-c^{2} x^{2}+1\right) \sqrt{-c^{2} d x^{2}+d}}{g^{5}(-c x+1)(c x+1)} \\
& -\frac{c^{2} d^{2} f\left(c^{2} f^{2}-2 g^{2}\right) x(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{2 g^{4}}-\frac{c^{2} d^{2} x^{2}(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x)) \sqrt{-c^{2} d x^{2}+d}}{5 g} \\
& +\frac{2 b c d^{2} x \sqrt{-c^{2} d x^{2}+d}}{15 g \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{3} d^{2} x^{3} \sqrt{-c^{2} d x^{2}+d}}{45 g \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c^{5} d^{2} x^{5} \sqrt{-c^{2} d x^{2}+d}}{25 g \sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{b d^{2}\left(c^{2} f^{2}-g^{2}\right)^{5 / 2} \text { polylog }\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{6} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{b d^{2}\left(c^{2} f^{2}-g^{2}\right)^{5 / 2} \text { polylog }\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{6} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c d^{2}\left(c^{2} f^{2}-2 g^{2}\right) x \sqrt{-c^{2} d x^{2}+d}}{3 g^{3} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{b c d^{2}\left(c^{2} f^{2}-g^{2}\right)^{2} x \sqrt{-c^{2} d x^{2}+d}}{g^{5} \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c^{3} d^{2} f x^{2} \sqrt{-c^{2} d x^{2}+d}}{16 g^{2} \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c^{3} d^{2}\left(c^{2} f^{2}-2 g^{2}\right) x^{3} \sqrt{-c^{2} d x^{2}+d}}{9 g^{3} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b c^{5} d^{2} f x^{4} \sqrt{-c^{2} d x^{2}+d}}{16 g^{2} \sqrt{c x-1} \sqrt{c x+1}} \\
& +\frac{c d^{2} f(a+b \operatorname{arccosh}(c x))^{2} \sqrt{-c^{2} d x^{2}+d}}{16 b g^{2} \sqrt{c x-1} \sqrt{c x+1}}+\frac{b d^{2}\left(c^{2} f^{2}-g^{2}\right)^{5 / 2} \operatorname{arccosh}(c x) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{6} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{b d^{2}\left(c^{2} f^{2}-g^{2}\right)^{5 / 2} \operatorname{arccosh}(c x) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{-c^{2} d x^{2}+d}}{g^{6} \sqrt{c x-1} \sqrt{c x+1}} \\
& -\frac{a d^{2}\left(c^{2} f^{2}-g^{2}\right)^{5 / 2} \operatorname{arctanh}\left(\frac{c^{2} f x+g}{\sqrt{c^{2} f^{2}-g^{2}} \sqrt{c^{2} x^{2}-1}}\right) \sqrt{c^{2} x^{2}-1} \sqrt{-c^{2} d x^{2}+d}}{g^{6}(-c x+1)(c x+1)}
\end{aligned}
$$

Result(type ?, 4233 leaves): Display of huge result suppressed!
Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{(g x+f)^{3}(a+b \operatorname{arccosh}(c x))}{\sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 3, 418 leaves, 13 steps):
$-3 f^{2} g(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x))-2 g^{3}(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x))-3 f g^{2} x(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x))$

$$
c^{2} \sqrt{-c^{2} d x^{2}+d} \quad 3 c^{4} \sqrt{-c^{2} d x^{2}+d} \quad 2 c^{2} \sqrt{-c^{2} d x^{2}+d}
$$

$-\frac{g^{3} x^{2}(-c x+1)(c x+1)(a+b \operatorname{arccosh}(c x))}{3 c^{2} \sqrt{-c^{2} d x^{2}+d}}-\frac{3 b f^{2} g x \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{-c^{2} d x^{2}+d}}-\frac{2 b g^{3} x \sqrt{c x-1} \sqrt{c x+1}}{3 c^{3} \sqrt{-c^{2} d x^{2}+d}}-\frac{3 b f g^{2} x^{2} \sqrt{c x-1} \sqrt{c x+1}}{4 c \sqrt{-c^{2} d x^{2}+d}}$
$-\frac{b g^{3} x^{3} \sqrt{c x-1} \sqrt{c x+1}}{\sqrt{y^{2}}}+\frac{f^{3}(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}{}+\frac{3 f g^{2}(a+b \operatorname{arccosh}(c x))^{2} \sqrt{c x-1} \sqrt{c x+1}}{}$
$9 c \sqrt{-c^{2} d x^{2}+d}$
$2 b c \sqrt{-c^{2} d x^{2}+d}$
$4 b c^{3} \sqrt{-c^{2} d x^{2}+d}$

Result(type 3, 858 leaves):

$$
\begin{aligned}
& \frac{a f^{3} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{\sqrt{c^{2} d}}-\frac{a g^{3} x^{2} \sqrt{-c^{2} d x^{2}+d}}{3 c^{2} d}-\frac{2 a g^{3} \sqrt{-c^{2} d x^{2}+d}}{3 d c^{4}}-\frac{3 a f g^{2} x \sqrt{-c^{2} d x^{2}+d}}{2 c^{2} d}+\frac{3 a f g^{2} \arctan \left(\frac{\sqrt{c^{2} d x}}{\sqrt{-c^{2} d x^{2}+d}}\right)}{2 c^{2} \sqrt{c^{2} d}} \\
& \\
& -\frac{3 a f^{2} g \sqrt{-c^{2} d x^{2}+d}}{c^{2} d}+\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \operatorname{arccosh(cx)}}{3 c^{4} d\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh(cx)^{2}f^{3}}}{2 d c\left(c^{2} x^{2}-1\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \sqrt{c x+1} \sqrt{c x-1} x^{3}}{9 c d\left(c^{2} x^{2}-1\right)}+\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \sqrt{c x-1} \sqrt{c x+1} x}{3 c^{3} d\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} f \operatorname{arccosh}(c x) x^{3}}{2 d\left(c^{2} x^{2}-1\right)} \\
& +\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} f \operatorname{arccosh}(c x) x}{2 d c^{2}\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} f \sqrt{c x-1} \sqrt{c x+1}}{8 d c^{3}\left(c^{2} x^{2}-1\right)}-\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g \operatorname{arccosh}(c x) x^{2} f^{2}}{d\left(c^{2} x^{2}-1\right)} \\
& \\
& -\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} \operatorname{arccosh}(c x)^{2} f g^{2}}{4 d c^{3}\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \operatorname{arccosh}(c x) x^{4}}{3 d\left(c^{2} x^{2}-1\right)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{3} \operatorname{arccosh}(c x) x^{2}}{3 c^{2} d\left(c^{2} x^{2}-1\right)} \\
& +\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g \operatorname{arccosh}(c x) f^{2}}{c^{2} d\left(c^{2} x^{2}-1\right)}+\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g^{2} f \sqrt{c x+1} \sqrt{c x-1} x^{2}}{4 d c\left(c^{2} x^{2}-1\right)}+\frac{3 b \sqrt{-d\left(c^{2} x^{2}-1\right)} g \sqrt{c x-1} \sqrt{c x+1} x f^{2}}{c d\left(c^{2} x^{2}-1\right)}
\end{aligned}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccosh}(c x)}{(g x+f)^{2} \sqrt{-c^{2} d x^{2}+d}} \mathrm{~d} x
$$

Optimal(type 4, 519 leaves, 13 steps):

$$
-\frac{g(c x+1)^{3 / 2}(a+b \operatorname{arccosh}(c x)) \sqrt{c x-1} \sqrt{\frac{c x-1}{c x+1}}}{\left(c^{2} f^{2}-g^{2}\right)(g x+f) \sqrt{-c^{2} d x^{2}+d}}+\frac{b c \ln (g x+f) \sqrt{c x-1} \sqrt{c x+1}}{\left(c^{2} f^{2}-g^{2}\right) \sqrt{-c^{2} d x^{2}+d}}
$$

$$
+\frac{c^{2} f(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \sqrt{-c^{2} d x^{2}+d}}
$$

$$
\begin{aligned}
& -\frac{c^{2} f(a+b \operatorname{arccosh}(c x)) \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \sqrt{-c^{2} d x^{2}+d}} \\
& +\frac{b c^{2} f \text { polylog }\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \sqrt{-c^{2} d x^{2}+d}}-\frac{b c^{2} f \text { polylog }\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{\left(c^{2} f^{2}-g^{2}\right)^{3 / 2} \sqrt{-c^{2} d x^{2}+d}}
\end{aligned}
$$

Result (type 4, 1977 leaves):

$$
\begin{aligned}
& \frac{a \sqrt{-\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}}{d\left(c^{2} f^{2}-g^{2}\right)\left(x+\frac{f}{g}\right)} \\
& \\
& a c^{2} f \ln \left(\frac{\left.-\frac{2 d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}+2 \sqrt{-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}} \sqrt{x+\left(x+\frac{f}{g}\right)^{2} c^{2} d+\frac{2 c^{2} d f\left(x+\frac{f}{g}\right)}{g}-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}\right)}{}\right. \\
& -
\end{aligned}
$$

$$
g\left(c^{2} f^{2}-g^{2}\right) \sqrt{-\frac{d\left(c^{2} f^{2}-g^{2}\right)}{g^{2}}}
$$

$$
-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x)(c x-1)(c x+1) x c^{2} f}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{3} c^{4} f}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}
$$

$$
-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} x c g}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x^{2} c^{2} g}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}
$$

$$
-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) \sqrt{c x-1} \sqrt{c x+1} c f}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) x c^{2} f}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \operatorname{arccosh}(c x) g}{d\left(c^{2} x^{2}-1\right)\left(c^{2} f^{2}-g^{2}\right)(g x+f)}
$$

$$
-\overline{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c^{2} f \operatorname{arccosh}(c x) \sqrt{c^{2} f^{2}-g^{2}} \ln \left(\frac{-(c x+\sqrt{c x-1} \sqrt{c x+1}) g-f c+\sqrt{c^{2} f^{2}-g^{2}}}{-f c+\sqrt{c^{2} f^{2}-g^{2}}}\right)}
$$

$$
d\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)
$$

$$
+\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c^{2} f \operatorname{arccosh}(c x) \sqrt{c^{2} f^{2}-g^{2}} \ln \left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g+f c+\sqrt{c^{2} f^{2}-g^{2}}}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right)}{d\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)}
$$

$$
+\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c^{3} \ln (c x+\sqrt{c x-1} \sqrt{c x+1}) f^{2}}{d\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)}
$$

$$
\begin{aligned}
& \left.-\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c^{3} \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2} g+2 f c(c x+\sqrt{c x-1} \sqrt{c x+1})+g\right) f^{2}}{d\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)}\right) \\
& -\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c^{2} f \sqrt{c^{2} f^{2}-g^{2}} \operatorname{dilog}\left(\frac{-(c x+\sqrt{c x-1} \sqrt{c x+1}) g-f c+\sqrt{c^{2} f^{2}-g^{2}}}{-f c+\sqrt{c^{2} f^{2}-g^{2}}}\right)}{d\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c^{2} f \sqrt{c^{2} f^{2}-g^{2}} \operatorname{dilog}\left(\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g+f c+\sqrt{c^{2} f^{2}-g^{2}}}{f\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)}\right.}{d \sqrt{f^{2}-g^{2}}} \\
& -\frac{2 b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c \ln (c x+\sqrt{c x-1} \sqrt{c x+1}) g^{2}}{d\left(c^{6} f^{4} x^{2}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)} \\
& +\frac{b \sqrt{-d\left(c^{2} x^{2}-1\right)} \sqrt{c x-1} \sqrt{c x+1} c \ln \left((c x+\sqrt{c x-1} \sqrt{c x+1})^{2} g+2 f c(c x+\sqrt{c x-1} \sqrt{c x+1})+g\right) g^{2}}{\left.2 c^{4}-2 c^{4} f^{2} g^{2} x^{2}-c^{4} f^{4}+c^{2} g^{4} x^{2}+2 c^{2} f^{2} g^{2}-g^{4}\right)}
\end{aligned}
$$

Problem 24: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccosh}(c x)) \ln \left(h(g x+f)^{m}\right)}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 610 leaves, 12 steps):

$$
6 b^{2} c \sqrt{-c^{2} x^{2}+1} \quad 2 b c \sqrt{-c^{2} x^{2}+1}
$$

$-\frac{m(a+b \operatorname{arccosh}(c x))^{2} \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{}$
$2 b c \sqrt{-c^{2} x^{2}+1}$
$-\frac{m(a+b \operatorname{arccosh}(c x))^{2} \ln \left(1+\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{}$ $2 b c \sqrt{-c^{2} x^{2}+1}$
$-\frac{m(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{-c^{2} x^{2}+1}}$

$$
\begin{aligned}
& \frac{m(a+b \operatorname{arccosh}(c x)) \operatorname{polylog}\left(2,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{-c^{2} x^{2}+1}} \\
+ & \frac{b m \text { polylog }\left(3,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{-c^{2} x^{2}+1}}+\frac{b m \operatorname{polylog}\left(3,-\frac{(c x+\sqrt{c x-1} \sqrt{c x+1}) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right) \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{-c^{2} x^{2}+1}}
\end{aligned}
$$

Result(type 8, 33 leaves):

$$
\int \frac{(a+b \operatorname{arccosh}(c x)) \ln \left(h(g x+f)^{m}\right)}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{\ln \left(h(g x+f)^{m}\right)}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 4, 252 leaves, 9 steps):
$\frac{\mathrm{I} m \arcsin (c x)^{2}}{2 c}+\frac{\arcsin (c x) \ln \left(h(g x+f)^{m}\right)}{c}-\frac{m \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right)}{c}-\frac{m \arcsin (c x) \ln \left(1-\frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right)}{c}$
$+\frac{\mathrm{I} m \text { polylog }\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{f c-\sqrt{c^{2} f^{2}-g^{2}}}\right)}{c}+\frac{\mathrm{I} m \text { polylog }\left(2, \frac{\mathrm{I}\left(\mathrm{I} c x+\sqrt{-c^{2} x^{2}+1}\right) g}{f c+\sqrt{c^{2} f^{2}-g^{2}}}\right)}{c}$
Result(type 8, 25 leaves):

$$
\int \frac{\ln \left(h(g x+f)^{m}\right)}{\sqrt{-c^{2} x^{2}+1}} \mathrm{~d} x
$$

Problem 26: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{a+b \operatorname{arccosh}(d x+c)}} \mathrm{d} x
$$

Optimal(type 4, 71 leaves, 7 steps):

Result(type 8, 14 leaves):

$$
\int \frac{1}{\sqrt{a+b \operatorname{arccosh}(d x+c)}} d x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{a-b \operatorname{arccosh}(d x+c)}} \mathrm{d} x
$$

Optimal(type 4, 73 leaves, 7 steps):

Result(type 8, 15 leaves):

$$
\int \frac{1}{\sqrt{a-b \operatorname{arccosh}(d x+c)}} \mathrm{d} x
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccosh}(d x+c))^{3}}{d e x+c e} \mathrm{~d} x
$$

Optimal(type 4, 207 leaves, 9 steps):

$$
-\frac{3 b^{3} \text { polylog }\left(4,-\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{4 d e}
$$

Result(type 4, 470 leaves):

```
\(\frac{a^{3} \ln (d x+c)}{d e}-\frac{b^{3} \operatorname{arccosh}(d x+c)^{4}}{4 d e}+\frac{b^{3} \operatorname{arccosh}(d x+c)^{3} \ln \left(1+(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e}\)
\(+\frac{3 b^{3} \operatorname{arccosh}(d x+c)^{2} \operatorname{polylog}\left(2,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{2 d e}\)
\(-\frac{3 b^{3} \operatorname{arccosh}(d x+c) \operatorname{polylog}\left(3,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{2 d e}+\frac{3 b^{3} \operatorname{polylog}\left(4,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{4 d e}\)
\(-\frac{a b^{2} \operatorname{arccosh}(d x+c)^{3}}{d e}+\frac{3 a b^{2} \operatorname{arccosh}(d x+c)^{2} \ln \left(1+(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e}\)
\(+\frac{3 a b^{2} \operatorname{arccosh}(d x+c) \operatorname{polylog}\left(2,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e}-\frac{3 a b^{2} \operatorname{polylog}\left(3,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{2 d e}\)
\(-\frac{3 b a^{2} \operatorname{arccosh}(d x+c)^{2}}{2 d e}+\frac{3 b a^{2} \operatorname{arccosh}(d x+c) \ln \left(1+(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e}\)
\(+\frac{3 b a^{2} \operatorname{polylog}\left(2,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{2 d e}\)
```

Problem 34: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccosh}(d x+c))^{3}}{(d e x+c e)^{2}} d x
$$

Optimal(type 4, 248 leaves, 11 steps):
$-\frac{(a+b \operatorname{arccosh}(d x+c))^{3}}{d e^{2}(d x+c)}+\frac{6 b(a+b \operatorname{arccosh}(d x+c))^{2} \arctan (d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})}{d e^{2}}$
$-\frac{6 \mathrm{I} b^{2}(a+b \operatorname{arccosh}(d x+c)) \operatorname{poly} \log (2,-\mathrm{I}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1}))}{d e^{2}}$
$+\frac{6 \mathrm{I} b^{2}(a+b \operatorname{arccosh}(d x+c)) \operatorname{polylog}(2, \mathrm{I}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1}))}{d e^{2}}+\frac{6 \mathrm{I} b^{3} \mathrm{polylog}(3,-\mathrm{I}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1}))}{d e^{2}}$
$-\frac{6 \mathrm{I} b^{3} \operatorname{polylog}(3, \mathrm{I}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1}))}{d e^{2}}$
Result(type 8, 25 leaves):

$$
\int \frac{(a+b \operatorname{arccosh}(d x+c))^{3}}{(d e x+c e)^{2}} \mathrm{~d} x
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccosh}(d x+c))^{3}}{(d e x+c e)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 180 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{3 b(a+b \operatorname{arccosh}(d x+c))^{2}}{2 d e^{3}}-\frac{(a+b \operatorname{arccosh}(d x+c))^{3}}{2 d e^{3}(d x+c)^{2}}-\frac{3 b^{2}(a+b \operatorname{arccosh}(d x+c)) \ln \left(1+\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{d e^{3}} \\
& \quad+\frac{3 b^{3} \operatorname{polylog}\left(2,-\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{2 d e^{3}}+\frac{3 b(a+b \operatorname{arccosh}(d x+c))^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}}{2 d e^{3}(d x+c)} \\
& \text { Result (type 4, } 374 \text { leaves) : } \\
& -\frac{a^{3}}{2 d e^{3}(d x+c)^{2}}+\frac{3 b^{3} \operatorname{arccosh}(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}}{2 d e^{3}(d x+c)}+\frac{3 b^{3} \operatorname{arccosh}(d x+c)^{2}}{2 d e^{3}}-\frac{b^{3} \operatorname{arccosh}(d x+c)^{3}}{2 d e^{3}(d x+c)^{2}} \\
& -\frac{3 b^{3} \operatorname{arccosh}(d x+c) \ln \left(1+(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e^{3}}-\frac{3 b^{3} \operatorname{polylog}\left(2,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{2 d e^{3}} \\
& \quad+\frac{3 a b^{2} \operatorname{arccosh}(d x+c)}{d e^{3}}+\frac{3 a b^{2} \operatorname{arccosh}(d x+c) \sqrt{d x+c-1} \sqrt{d x+c+1}}{d e^{3}(d x+c)}-\frac{3 a b^{2} \operatorname{arccosh}(d x+c)^{2}}{2 d e^{3}(d x+c)^{2}} \\
& -\frac{3 a b^{2} \ln \left(1+(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e^{3}}-\frac{3 b a^{2} \operatorname{arccosh}(d x+c)}{2 d e^{3}(d x+c)^{2}}+\frac{3 b a^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}}{2 d e^{3}(d x+c)}
\end{aligned}
$$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)^{3}(a+b \operatorname{arccosh}(d x+c))^{4} \mathrm{~d} x
$$

Optimal(type 3, 339 leaves, 16 steps):
$\frac{45 b^{4} e^{3}(d x+c)^{2}}{128 d}+\frac{3 b^{4} e^{3}(d x+c)^{4}}{128 d}-\frac{45 b^{2} e^{3}(a+b \operatorname{arccosh}(d x+c))^{2}}{128 d}+\frac{9 b^{2} e^{3}(d x+c)^{2}(a+b \operatorname{arccosh}(d x+c))^{2}}{16 d}$
$+\frac{3 b^{2} e^{3}(d x+c)^{4}(a+b \operatorname{arccosh}(d x+c))^{2}}{16 d}-\frac{3 e^{3}(a+b \operatorname{arccosh}(d x+c))^{4}}{32 d}+\frac{e^{3}(d x+c)^{4}(a+b \operatorname{arccosh}(d x+c))^{4}}{4 d}$
$-\frac{45 b^{3} e^{3}(d x+c)(a+b \operatorname{arccosh}(d x+c)) \sqrt{d x+c-1} \sqrt{d x+c+1}}{64 d}-\frac{3 b^{3} e^{3}(d x+c)^{3}(a+b \operatorname{arccosh}(d x+c)) \sqrt{d x+c-1} \sqrt{d x+c+1}}{32 d}$
$-\frac{3 b e^{3}(d x+c)(a+b \operatorname{arccosh}(d x+c))^{3} \sqrt{d x+c-1} \sqrt{d x+c+1}}{8 d}-\frac{b e^{3}(d x+c)^{3}(a+b \operatorname{arccosh}(d x+c))^{3} \sqrt{d x+c-1} \sqrt{d x+c+1}}{4 d}$
Result(type ?, 2464 leaves): Display of huge result suppressed!
Problem 37: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)(a+b \operatorname{arccosh}(d x+c))^{4} \mathrm{~d} x
$$

Optimal(type 3, 189 leaves, 9 steps):
$\frac{3 b^{4} e(d x+c)^{2}}{4 d}-\frac{3 b^{2} e(a+b \operatorname{arccosh}(d x+c))^{2}}{4 d}+\frac{3 b^{2} e(d x+c)^{2}(a+b \operatorname{arccosh}(d x+c))^{2}}{2 d}-\frac{e(a+b \operatorname{arccosh}(d x+c))^{4}}{4 d}$
$+\frac{e(d x+c)^{2}(a+b \operatorname{arccosh}(d x+c))^{4}}{2 d}-\frac{3 b^{3} e(d x+c)(a+b \operatorname{arccosh}(d x+c)) \sqrt{d x+c-1} \sqrt{d x+c+1}}{2 d}$
$-\frac{b e(d x+c)(a+b \operatorname{arccosh}(d x+c))^{3} \sqrt{d x+c-1} \sqrt{d x+c+1}}{d}$
Result(type 3, 932 leaves):
$\frac{2 \operatorname{arccosh}(d x+c) a^{3} b c^{2} e}{d}-e b^{4} \operatorname{arccosh}(d x+c)^{3} \sqrt{d x+c-1} \sqrt{d x+c+1} x-\frac{3 e b^{4} \operatorname{arccosh}(d x+c) \sqrt{d x+c-1} \sqrt{d x+c+1} x}{2}+4 e a b^{3} \operatorname{arccosh}(d x$ $+c)^{3} x c+6 e a b^{3} \operatorname{arccosh}(d x+c) x c-\frac{3 e a b^{3} \sqrt{d x+c-1} \sqrt{d x+c+1} x}{2}+6 e a^{2} b^{2} \operatorname{arccosh}(d x+c)^{2} x c-\sqrt{d x+c-1} \sqrt{d x+c+1} x a^{3} b e$ $+4 \operatorname{arccosh}(d x+c) x a^{3} b c e+3 d e a^{2} b^{2} \operatorname{arccosh}(d x+c)^{2} x^{2}+2 d \operatorname{arccosh}(d x+c) x^{2} a^{3} b e+2 d e a b^{3} \operatorname{arccosh}(d x+c)^{3} x^{2}+3 d e a b^{3} \operatorname{arccosh}(d x+c) x^{2}$
$+\frac{2 e a b^{3} \operatorname{arccosh}(d x+c)^{3} c^{2}}{d}+\frac{3 e a b^{3} \operatorname{arccosh}(d x+c) c^{2}}{d}+\frac{3 e a^{2} b^{2} \operatorname{arccosh}(d x+c)^{2} c^{2}}{d}+\frac{d x^{2} a^{4} e}{2}+\frac{3 d e b^{4} x^{2}}{4}-\frac{e b^{4} \operatorname{arccosh}(d x+c)^{4}}{4 d}$
$-\frac{3 e b^{4} \operatorname{arccosh}(d x+c)^{2}}{4 d}+x a^{4} c e+\frac{3 e b^{4} x c}{2}+\frac{a^{4} c^{2} e}{2 d}+\frac{3 e b^{4} c^{2}}{4 d}-\frac{3 e a^{2} b^{2} \operatorname{arccosh}(d x+c) \sqrt{d x+c-1} \sqrt{d x+c+1} c}{d}$
$-\frac{e a^{3} b \sqrt{d x+c-1} \sqrt{d x+c+1} \ln \left(d x+c+\sqrt{(d x+c)^{2}-1}\right)}{d \sqrt{(d x+c)^{2}-1}}-\frac{3 e a b^{3} \operatorname{arccosh}(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1} c}{d}+3 e b^{4} \operatorname{arccosh}(d x$
$+c)^{2} x c+\frac{e b^{4} \operatorname{arccosh}(d x+c)^{4} c^{2}}{2 d}+\frac{3 e b^{4} \operatorname{arccosh}(d x+c)^{2} c^{2}}{2 d}-\frac{e a b^{3} \operatorname{arccosh}(d x+c)^{3}}{d}-\frac{3 e a b^{3} \operatorname{arccosh}(d x+c)}{2 d}-\frac{3 e a^{2} b^{2} \operatorname{arccosh}(d x+c)^{2}}{2 d}$
$+\frac{d e b^{4} \operatorname{arccosh}(d x+c)^{4} x^{2}}{2}+\frac{3 d e b^{4} \operatorname{arccosh}(d x+c)^{2} x^{2}}{2}-3 e a^{2} b^{2} \operatorname{arccosh}(d x+c) \sqrt{d x+c-1} \sqrt{d x+c+1} x-3 e a b^{3} \operatorname{arccosh}(d x$
$+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1} x-\frac{\sqrt{d x+c-1} \sqrt{d x+c+1} a^{3} b c e}{d}-\frac{e b^{4} \operatorname{arccosh}(d x+c)^{3} \sqrt{d x+c-1} \sqrt{d x+c+1} c}{d}$
$-\frac{3 e b^{4} \operatorname{arccosh}(d x+c) \sqrt{d x+c-1} \sqrt{d x+c+1} c}{2 d}-\frac{3 e a b^{3} \sqrt{d x+c-1} \sqrt{d x+c+1} c}{2 d}+\frac{3 e a^{2} b^{2} c^{2}}{2 d}+\frac{3 d e a^{2} b^{2} x^{2}}{2}+e b^{4} \operatorname{arccosh}(d x+c)^{4} x c$ $+3 e a^{2} b^{2} x c$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccosh}(d x+c))^{4}}{d e x+c e} \mathrm{~d} x
$$

Optimal(type 4, 258 leaves, 10 steps):
$\frac{(a+b \operatorname{arccosh}(d x+c))^{5}}{5 b d e}+\frac{(a+b \operatorname{arccosh}(d x+c))^{4} \ln \left(1+\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{d e}$
$-\frac{2 b(a+b \operatorname{arccosh}(d x+c))^{3} \operatorname{polylog}\left(2,-\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{d e}$
$-\frac{3 b^{2}(a+b \operatorname{arccosh}(d x+c))^{2} \operatorname{polylog}\left(3,-\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{d e}$
$-\frac{3 b^{3}(a+b \operatorname{arccosh}(d x+c)) \operatorname{polylog}\left(4,-\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{d e}$
$-\frac{3 b^{4} \text { polylog }\left(5,-\frac{1}{(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}}\right)}{2 d e}$

```
Result(type 4, 726 leaves):
\frac{\mp@subsup{a}{}{4}\operatorname{ln}(dx+c)}{de}-\frac{\mp@subsup{b}{}{4}\operatorname{arccosh(dx+c\mp@subsup{)}{}{5}}}{5de}+\frac{\mp@subsup{b}{}{4}\operatorname{arccosh}(dx+c\mp@subsup{)}{}{4}\operatorname{ln}(1+(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}{de}
    +\frac{2\mp@subsup{b}{}{4}\operatorname{arccosh}(dx+c)}{}\mp@subsup{}{}{3}\operatorname{polylog}(2,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})
    - 3\mp@subsup{b}{}{4}\operatorname{arccosh}(dx+c\mp@subsup{)}{}{2}\mathrm{ polylog( 3,-(dx+c+ ( }d=\mp@code{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})
    +\frac{3\mp@subsup{b}{}{4}\operatorname{arccosh}(dx+c)\operatorname{polylog}(4,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}{de}-\frac{3\mp@subsup{b}{}{4}\operatorname{polylog}(5,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}{2de}
    - a\mp@subsup{b}{}{3}\operatorname{arccosh(dx+c\mp@subsup{)}{}{4}}
    +\frac{6a\mp@subsup{b}{}{3}\operatorname{arccosh(dx+c)}\mp@subsup{)}{}{2}\operatorname{polylog}(2,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}{de}
    - 6a\mp@subsup{b}{}{3}\operatorname{arccosh(dx+c) polylog(3,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}
    - 2\mp@subsup{a}{}{2}\mp@subsup{b}{}{2}\operatorname{arccosh}(dx+c\mp@subsup{)}{}{3}
    +\frac{6\mp@subsup{a}{}{2}\mp@subsup{b}{}{2}\operatorname{arccosh(dx+c) polylog}(2,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}{de}-\frac{3\mp@subsup{a}{}{2}\mp@subsup{b}{}{2}\operatorname{polylog}(3,-(dx+c+\sqrt{}{dx+c-1}\sqrt{}{dx+c+1}\mp@subsup{)}{}{2})}{de}
```

$-\frac{2 a^{3} b \operatorname{arccosh}(d x+c)^{2}}{d e}+\frac{4 a^{3} b \operatorname{arccosh}(d x+c) \ln \left(1+(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e}$
$+\frac{2 a^{3} b \text { polylog }\left(2,-(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})^{2}\right)}{d e}$

Problem 41: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d e x+c e)^{4}}{(a+b \operatorname{arccosh}(d x+c))^{3}} \mathrm{~d} x
$$

Optimal(type 4, 307 leaves, 26 steps):

$$
\begin{array}{r}
\left.\frac{2 e^{4}(d x+c)^{3}}{b^{2} d(a+b \operatorname{arccosh}(d x+c))}-\frac{5 e^{4}(d x+c)^{5}}{2 b^{2} d(a+b \operatorname{arccosh}(d x+c))}+\frac{e^{4} \cosh \left(\frac{a}{b}\right) \operatorname{Shi}\left(\frac{a+b \operatorname{arccosh}(d x+c)}{b}\right)}{32 b^{3} d}+\frac{25 e^{4} \cosh \left(\frac{3 a}{b}\right) \operatorname{shi}\left(\frac{3(a+b \operatorname{arccosh}(d x+c))}{b}\right)}{16 b^{3} d}\right) \\
+\frac{e^{4} \operatorname{Chi}\left(\frac{a+b \operatorname{arccosh}(d x+c)}{b}\right) \sinh \left(\frac{a}{b}\right)}{16 b^{3} d}-\frac{27 e^{4} \operatorname{Chi}\left(\frac{3(a+b \operatorname{arccosh}(d x+c))}{b}\right) \sinh \left(\frac{3 a}{b}\right)}{32 b^{3} d} \\
- \\
-\frac{25 e^{4} \operatorname{Chi}\left(\frac{5(a+b \operatorname{arccosh}(d x+c))}{b}\right) \sinh \left(\frac{5 a}{b}\right)}{32 b^{3} d}-\frac{e^{4}(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}}{2 b d(a+b \operatorname{arccosh}(d x+c))^{2}}
\end{array}
$$

Result(type 4, 992 leaves):
$\frac{1}{d}\left(-\frac{1}{64 b^{2}\left(b^{2} \operatorname{arccosh}(d x+c)^{2}+2 a b \operatorname{arccosh}(d x+c)+a^{2}\right)}\left(\left(-16(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+12(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}\right.\right.\right.$
$\left.\left.-\sqrt{d x+c-1} \sqrt{d x+c+1}+16(d x+c)^{5}-20(d x+c)^{3}+5 d x+5 c\right) e^{4}(5 b \operatorname{arccosh}(d x+c)+5 a-b)\right)$
$+\frac{25 e^{4} \mathrm{e}^{\frac{5 a}{b}} \mathrm{Ei}_{1}\left(5 \operatorname{arccosh}(d x+c)+\frac{5 a}{b}\right)}{64 b^{3}}$
$-\frac{3\left(-4(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x+c-1} \sqrt{d x+c+1}+4(d x+c)^{3}-3 d x-3 c\right) e^{4}(3 b \operatorname{arccosh}(d x+c)+3 a-b)}{64 b^{2}\left(b^{2} \operatorname{arccosh}(d x+c)^{2}+2 a b \operatorname{arccosh}(d x+c)+a^{2}\right)}$

$$
\begin{aligned}
& +\frac{27 e^{4} \mathrm{e}^{\frac{3 a}{b}} \operatorname{Ei}_{1}\left(3 \operatorname{arccosh}(d x+c)+\frac{3 a}{b}\right)}{64 b^{3}}-\frac{(-\sqrt{d x+c-1} \sqrt{d x+c+1}+d x+c) e^{4}(b \operatorname{arccosh}(d x+c)+a-b)}{32 b^{2}\left(b^{2} \operatorname{arccosh}(d x+c)^{2}+2 a b \operatorname{arccosh}(d x+c)+a^{2}\right)} \\
& +\frac{e^{4} \mathrm{e}^{\frac{a}{b}} \operatorname{Ei}_{1}\left(\operatorname{arccosh}(d x+c)+\frac{a}{b}\right)}{32 b^{3}}-\frac{e^{4}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})}{32 b(a+b \operatorname{arccosh}(d x+c))^{2}}-\frac{e^{4}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})}{32 b^{2}(a+b \operatorname{arccosh}(d x+c))} \\
& -\frac{e^{4} \mathrm{e}^{-\frac{a}{b}} \mathrm{Ei}_{1}\left(-\operatorname{arccosh}(d x+c)-\frac{a}{b}\right)}{32 b^{3}}-\frac{3 e^{4}\left(4(d x+c)^{3}-3 d x-3 c+4(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}-\sqrt{d x+c-1} \sqrt{d x+c+1}\right)}{64 b(a+b \operatorname{arccosh}(d x+c))^{2}} \\
& -\frac{9 e^{4}\left(4(d x+c)^{3}-3 d x-3 c+4(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}-\sqrt{d x+c-1} \sqrt{d x+c+1}\right)}{64 b^{2}(a+b \operatorname{arccosh}(d x+c))} \\
& -\frac{27 e^{4} \mathrm{e}^{-\frac{3 a}{b}} \mathrm{Ei}_{1}\left(-3 \operatorname{arccosh}(d x+c)-\frac{3 a}{b}\right)}{64 b^{3}}-\frac{1}{64 b(a+b \operatorname{arccosh}(d x+c))^{2}}\left(e ^ { 4 } \left(16(d x+c)^{5}-20(d x+c)^{3}+16(d x\right.\right. \\
& \left.\left.+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+5 d x+5 c-12(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x+c-1} \sqrt{d x+c+1}\right)\right) \\
& -\frac{1}{64 b^{2}(a+b \operatorname{arccosh}(d x+c))}\left(5 e ^ { 4 } \left(16(d x+c)^{5}-20(d x+c)^{3}+16(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+5 d x+5 c-12(d x\right.\right. \\
& \left.\left.\left.+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x+c-1} \sqrt{d x+c+1}\right)\right)-\frac{25 e^{4} \mathrm{e}^{-\frac{5 a}{b}} \operatorname{Ei}_{1}\left(-5 \operatorname{arccosh}(d x+c)-\frac{5 a}{b}\right)}{64 b^{3}}\right)
\end{aligned}
$$

Problem 43: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d e x+c e)^{4}}{(a+b \operatorname{arccosh}(d x+c))^{4}} \mathrm{~d} x
$$

Optimal(type 4, 399 leaves, 24 steps):

$$
\frac{2 e^{4}(d x+c)^{3}}{3 b^{2} d(a+b \operatorname{arccosh}(d x+c))^{2}}-\frac{5 e^{4}(d x+c)^{5}}{6 b^{2} d(a+b \operatorname{arccosh}(d x+c))^{2}}+\frac{e^{4} \operatorname{Chi}\left(\frac{a+b \operatorname{arccosh}(d x+c)}{b}\right) \cosh \left(\frac{a}{b}\right)}{48 b^{4} d}
$$

$-\frac{125 e^{4} \operatorname{Shi}\left(\frac{5(a+b \operatorname{arccosh}(d x+c))}{b}\right) \sinh \left(\frac{5 a}{b}\right)}{96 b^{4} d}-\frac{e^{4}(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}}{3 b d(a+b \operatorname{arccosh}(d x+c))^{3}}+\frac{2 e^{4}(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}}{b^{3} d(a+b \operatorname{arccosh}(d x+c))}$
$-\frac{25 e^{4}(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}}{6 b^{3} d(a+b \operatorname{arccosh}(d x+c))}$
Result(type 4, 1374 leaves):
$\frac{1}{d}\left(\left(\left(-16(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+12(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}-\sqrt{d x+c-1} \sqrt{d x+c+1}+16(d x+c)^{5}-20(d x+c)^{3}\right.\right.\right.$
$\left.+5 d x+5 c) e^{4}\left(25 b^{2} \operatorname{arccosh}(d x+c)^{2}+50 a b \operatorname{arccosh}(d x+c)-5 \operatorname{arccosh}(d x+c) b^{2}+25 a^{2}-5 a b+2 b^{2}\right)\right) /\left(192 b^{3}\left(b^{3} \operatorname{arccosh}(d x+c)^{3}\right.\right.$
$\left.\left.+3 a b^{2} \operatorname{arccosh}(d x+c)^{2}+3 b a^{2} \operatorname{arccosh}(d x+c)+a^{3}\right)\right)-\frac{125 e^{4} \mathrm{e}^{\frac{5 a}{b}} \operatorname{Ei}_{1}\left(5 \operatorname{arccosh}(d x+c)+\frac{5 a}{b}\right)}{192 b^{4}}+((-4(d x+c) \sqrt[2]{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x}$
$\left.\left.+a^{3}\right)\right)-\frac{27 e^{4} \mathrm{e}^{\frac{3 a}{b}} \mathrm{Ei}_{1}\left(3 \operatorname{arccosh}(d x+c)+\frac{3 a}{b}\right)}{64 b^{4}}$
$+\frac{(-\sqrt{d x+c-1} \sqrt{d x+c+1}+d x+c) e^{4}\left(b^{2} \operatorname{arccosh}(d x+c)^{2}+2 a b \operatorname{arccosh}(d x+c)-\operatorname{arccosh}(d x+c) b^{2}+a^{2}-a b+2 b^{2}\right)}{96 b^{3}\left(b^{3} \operatorname{arccosh}(d x+c)^{3}+3 a b^{2} \operatorname{arccosh}(d x+c)^{2}+3 b a^{2} \operatorname{arccosh}(d x+c)+a^{3}\right)}$
$-\frac{e^{4} \mathrm{e}^{\frac{a}{b}} \mathrm{Ei}_{1}\left(\operatorname{arccosh}(d x+c)+\frac{a}{b}\right)}{96 b^{4}}-\frac{e^{4}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})}{48 b(a+b \operatorname{arccosh}(d x+c))^{3}}-\frac{e^{4}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})}{96 b^{2}(a+b \operatorname{arccosh}(d x+c))^{2}}$
$-\frac{e^{4}(d x+c+\sqrt{d x+c-1} \sqrt{d x+c+1})}{96 b^{3}(a+b \operatorname{arccosh}(d x+c))}-\frac{e^{4} \mathrm{e}^{-\frac{a}{b}} \mathrm{Ei}_{1}\left(-\operatorname{arccosh}(d x+c)-\frac{a}{b}\right)}{96 b^{4}}$

```
\(-\frac{e^{4}\left(4(d x+c)^{3}-3 d x-3 c+4(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}-\sqrt{d x+c-1} \sqrt{d x+c+1}\right)}{32 b(a+b \operatorname{arccosh}(d x+c))^{3}}\)
\(-\frac{3 e^{4}\left(4(d x+c)^{3}-3 d x-3 c+4(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}-\sqrt{d x+c-1} \sqrt{d x+c+1}\right)}{64 b^{2}(a+b \operatorname{arccosh}(d x+c))^{2}}\)
\(-\frac{9 e^{4}\left(4(d x+c)^{3}-3 d x-3 c+4(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}-\sqrt{d x+c-1} \sqrt{d x+c+1}\right)}{64 b^{3}(a+b \operatorname{arccosh}(d x+c))}\)
\(-\frac{27 e^{4} \mathrm{e}^{-\frac{3 a}{b}} \operatorname{Ei}_{1}\left(-3 \operatorname{arccosh}(d x+c)-\frac{3 a}{b}\right)}{64 b^{4}}-\frac{1}{96 b(a+b \operatorname{arccosh}(d x+c))^{3}}\left(e^{4}\left(16(d x+c)^{5}-20(d x+c)^{3}+16(d x\right.\right.\)
\(\left.\left.+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+5 d x+5 c-12(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x+c-1} \sqrt{d x+c+1}\right)\right)\)
\(-\frac{1}{192 b^{2}(a+b \operatorname{arccosh}(d x+c))^{2}}\left(5 e^{4}\left(16(d x+c)^{5}-20(d x+c)^{3}+16(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+5 d x+5 c-12(d x\right.\right.\)
\(\left.\left.+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x+c-1} \sqrt{d x+c+1}\right)\right)-\frac{1}{192 b^{3}(a+b \operatorname{arccosh}(d x+c))}\left(25 e^{4}\left(16(d x+c)^{5}-20(d x+c)^{3}\right.\right.\)
\(\left.\left.+16(d x+c)^{4} \sqrt{d x+c-1} \sqrt{d x+c+1}+5 d x+5 c-12(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}+\sqrt{d x+c-1} \sqrt{d x+c+1}\right)\right)\)
\(\left.-\frac{125 e^{4} \mathrm{e}^{-\frac{5 a}{b}} \operatorname{Ei}_{1}\left(-5 \operatorname{arccosh}(d x+c)-\frac{5 a}{b}\right)}{192 b^{4}}\right)\)
```

Problem 45: Unable to integrate problem.

$$
\int(d e x+c e)^{3} \sqrt{a+b \operatorname{arccosh}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 218 leaves, 16 steps):

$$
-\frac{e^{3} \mathrm{e}^{\frac{2 a}{b}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{b} \sqrt{2} \sqrt{\pi}}{64 d}-\frac{e^{3} \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{b} \sqrt{2} \sqrt{\pi}}{64 d \mathrm{e}^{\frac{2 a}{b}}}
$$

$$
-\frac{e^{3} \mathrm{e}^{\frac{4 a}{b}} \operatorname{erf}\left(\frac{2 \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{b} \sqrt{\pi}}{256 d}-\frac{e^{3} \operatorname{erf}\left(\frac{2 \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{b} \sqrt{\pi}}{256 d \mathrm{e}^{\frac{4 a}{b}}}-\frac{3 e^{3} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{32 d}
$$

$$
+\frac{e^{3}(d x+c)^{4} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{4 d}
$$

Result(type 8, 25 leaves):

$$
\int(d e x+c e)^{3} \sqrt{a+b \operatorname{arccosh}(d x+c)} \mathrm{d} x
$$

Problem 46: Unable to integrate problem.
$\int(d e x+c e)^{2} \sqrt{a+b \operatorname{arccosh}(d x+c)} \mathrm{d} x$
Optimal(type 4, 194 leaves, 16 steps):

Result(type 8, 25 leaves):

$$
\int(d e x+c e)^{2} \sqrt{a+b \operatorname{arccosh}(d x+c)} \mathrm{d} x
$$

Problem 47: Unable to integrate problem.

$$
\int(d e x+c e)^{3}(a+b \operatorname{arccosh}(d x+c))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 387 leaves, 29 steps):
$-\frac{3 e^{3}(a+b \operatorname{arccosh}(d x+c))^{5 / 2}}{32 d}+\frac{e^{3}(d x+c)^{4}(a+b \operatorname{arccosh}(d x+c))^{5 / 2}}{4 d}-\frac{15 b^{5 / 2} e^{3} \mathrm{e}^{\frac{2 a}{b}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{2} \sqrt{\pi}}{1024 d}$

Result(type 8, 25 leaves):

$$
\int(d e x+c e)^{3}(a+b \operatorname{arccosh}(d x+c))^{5 / 2} \mathrm{~d} x
$$

Problem 48: Unable to integrate problem.

$$
\int(d e x+c e)(a+b \operatorname{arccosh}(d x+c))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 219 leaves, 14 steps):
$-\frac{e(a+b \operatorname{arccosh}(d x+c))^{5 / 2}}{4 d}+\frac{e(d x+c)^{2}(a+b \operatorname{arccosh}(d x+c))^{5 / 2}}{2 d}-\frac{15 b^{5 / 2} e \mathrm{e}^{\frac{2 a}{b}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{2} \sqrt{\pi}}{512 d}$

$$
-\frac{15 b^{2} e \sqrt{a+b \operatorname{arccosh}(d x+c)}}{64 d}+\frac{15 b^{2} e(d x+c)^{2} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{32 d}
$$

Result(type 8, 23 leaves):

$$
\int(d e x+c e)(a+b \operatorname{arccosh}(d x+c))^{5 / 2} \mathrm{~d} x
$$

Problem 49: Unable to integrate problem.

$$
\int \frac{(d e x+c e)^{2}}{(a+b \operatorname{arccosh}(d x+c))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 271 leaves, 24 steps):

$+\frac{e^{2} \operatorname{erfi}\left(\frac{\sqrt{3} \sqrt{a+b \operatorname{arccosh}(d x+c)}}{\sqrt{b}}\right) \sqrt{3} \sqrt{\pi}}{2 b^{5 / 2} d \mathrm{e}^{\frac{3 a}{b}}}-\frac{2 e^{2}(d x+c)^{2} \sqrt{d x+c-1} \sqrt{d x+c+1}}{3 b d(a+b \operatorname{arccosh}(d x+c))^{3 / 2}}+\frac{8 e^{2}(d x+c)}{3 b^{2} d \sqrt{a+b \operatorname{arccosh}(d x+c)}}$
$-\frac{4 e^{2}(d x+c)^{3}}{b^{2} d \sqrt{a+b \operatorname{arccosh}(d x+c)}}$
Result(type 8, 25 leaves):

$$
\int \frac{(d e x+c e)^{2}}{(a+b \operatorname{arccosh}(d x+c))^{5 / 2}} \mathrm{~d} x
$$

Problem 50: Unable to integrate problem.

$$
\int \frac{1}{(a+b \operatorname{arccosh}(d x+c))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 132 leaves, 9 steps):

$$
-\frac{4(d x+c)}{3 b^{2} d \sqrt{a+b \operatorname{arccosh}(d x+c)}}
$$

Result(type 8, 14 leaves):

$$
\int \frac{1}{(a+b \operatorname{arccosh}(d x+c))^{5 / 2}} \mathrm{~d} x
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int(d e x+c e)^{3 / 2}(a+b \operatorname{arccosh}(d x+c)) \mathrm{d} x
$$

Optimal(type 4, 121 leaves, 6 steps):
$\frac{2(e(d x+c))^{5 / 2}(a+b \operatorname{arccosh}(d x+c))}{5 d e}-\frac{12 b e \text { EllipticE }\left(\frac{\sqrt{d x+c+1} \sqrt{2}}{2}, \sqrt{2}\right) \sqrt{-d x-c+1} \sqrt{e(d x+c)}}{25 d \sqrt{-d x-c} \sqrt{d x+c-1}}$

$$
-\frac{4 b(e(d x+c))^{3 / 2} \sqrt{d x+c-1} \sqrt{d x+c+1}}{25 d}
$$

Result(type 4, 253 leaves):

$$
\begin{aligned}
& \frac{1}{d e}\left(2 \left(\frac{(d e x+c e)^{5 / 2} a}{5}+b\left(\frac{(d e x+c e)^{5} / 2 \operatorname{arccosh}\left(\frac{d e x+c e}{e}\right)}{5}-\frac{1}{25 e \sqrt{-\frac{1}{e}} \sqrt{\frac{d e x+c e+e}{e}} \sqrt{\frac{d e x+c e-e}{e}}}\left(2 \left(\sqrt{-\frac{1}{e}}(d e x+c e)^{7 / 2}\right.\right.\right.\right.\right. \\
&+3 \sqrt{\frac{d e x+c e+e}{e}} \sqrt{-\frac{d e x+c e-e}{e}} e^{3} \operatorname{EllipticF}\left(\sqrt{d e x+c e} \sqrt{-\frac{1}{e}, \mathrm{I}}\right) \\
&\left.\left.\left.\left.\left.-3 e^{3} \sqrt{\frac{d e x+c e+e}{e}} \sqrt{-\frac{d e x+c e-e}{e}} \operatorname{EllipticE}\left(\sqrt{d e x+c e} \sqrt{-\frac{1}{e}}, \mathrm{I}\right)-\sqrt{-\frac{1}{e}}(d e x+c e)^{3 / 2} e^{2}\right)\right)\right)\right)\right)
\end{aligned}
$$

Problem 54: Unable to integrate problem.

$$
\int(d e x+c e)^{5 / 2}(a+b \operatorname{arccosh}(d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 5, 125 leaves, 3 steps):
$\frac{2(e(d x+c))^{7 / 2}(a+b \operatorname{arccosh}(d x+c))^{2}}{7 d e}-\frac{16 b^{2}(e(d x+c))^{11 / 2} \operatorname{HypergeometricPFQ}\left(\left[1, \frac{11}{4}, \frac{11}{4}\right],\left[\frac{13}{4}, \frac{15}{4}\right],(d x+c)^{2}\right)}{693 d e^{3}}$
$-{ }^{8 b(e(d x+c))^{9 / 2}(a+b \operatorname{arccosh}(d x+c)) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{9}{4}\right],\left[\frac{13}{4}\right],(d x+c)^{2}\right) \sqrt{-d x-c+1}}$
$63 d e^{2} \sqrt{d x+c-1}$
Result(type 8, 25 leaves):

$$
\int(d e x+c e)^{5 / 2}(a+b \operatorname{arccosh}(d x+c))^{2} \mathrm{~d} x
$$

Problem 55: Unable to integrate problem.

$$
\int(d e x+c e)^{3 / 2}(a+b \operatorname{arccosh}(d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 5, 125 leaves, 3 steps):
$\frac{2(e(d x+c))^{5 / 2}(a+b \operatorname{arccosh}(d x+c))^{2}}{5 d e}-\frac{16 b^{2}(e(d x+c))^{9 / 2} \operatorname{HypergeometricPFQ}\left(\left[1, \frac{9}{4}, \frac{9}{4}\right],\left[\frac{11}{4}, \frac{13}{4}\right],(d x+c)^{2}\right)}{315 d e^{3}}$
$-\frac{8 b(e(d x+c))^{7 / 2}(a+b \operatorname{arccosh}(d x+c)) \text { hypergeom }\left(\left[\frac{1}{2}, \frac{7}{4}\right],\left[\frac{11}{4}\right],(d x+c)^{2}\right) \sqrt{-d x-c+1}}{2}$
$35 d e^{2} \sqrt{d x+c-1}$
Result(type 8, 25 leaves):

$$
\int(d e x+c e)^{3 / 2}(a+b \operatorname{arccosh}(d x+c))^{2} \mathrm{~d} x
$$

Problem 60: Unable to integrate problem.

$$
\int(d e x+c e)^{m}(a+b \operatorname{arccosh}(d x+c))^{2} \mathrm{~d} x
$$

Optimal(type 5, 184 leaves, 3 steps):
$\frac{(e(d x+c))^{1+m}(a+b \operatorname{arccosh}(d x+c))^{2}}{d e(1+m)}-\frac{2 b^{2}(e(d x+c))^{3+m} \text { HypergeometricPFQ }\left(\left[1, \frac{3}{2}+\frac{m}{2}, \frac{3}{2}+\frac{m}{2}\right],\left[2+\frac{m}{2}, \frac{5}{2}+\frac{m}{2}\right],(d x+c)^{2}\right)}{d e^{3}(1+m)(2+m)(3+m)}$
$-\frac{2 b(e(d x+c))^{2+m}(a+b \operatorname{arccosh}(d x+c)) \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[2+\frac{m}{2}\right],(d x+c)^{2}\right) \sqrt{-d x-c+1}}{d e^{2}(1+m)(2+m) \sqrt{d x+c-1}}$
Result(type 8, 25 leaves):

$$
\int(d e x+c e)^{m}(a+b \operatorname{arccosh}(d x+c))^{2} \mathrm{~d} x
$$

Problem 62: Unable to integrate problem.

$$
\int \frac{\operatorname{arccosh}\left(a x^{5}\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 82 leaves, 5 steps):

$$
-\frac{\operatorname{arccosh}\left(a x^{5}\right)^{2}}{10}+\frac{\operatorname{arccosh}\left(a x^{5}\right) \ln \left(1+\left(a x^{5}+\sqrt{a x^{5}-1} \sqrt{a x^{5}+1}\right)^{2}\right)}{5}+\frac{\operatorname{polylog}\left(2,-\left(a x^{5}+\sqrt{a x^{5}-1} \sqrt{a x^{5}+1}\right)^{2}\right)}{10}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{arccosh}\left(a x^{5}\right)}{x} \mathrm{~d} x
$$

Problem 66: Unable to integrate problem.

$$
\int\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 68 leaves, 2 steps):

$$
8 b^{2} x+x\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{2}-\frac{4 b\left(d x^{4}+2 x^{2}\right)\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)}{x \sqrt{x^{2} d} \sqrt{x^{2} d+2}}
$$

Result(type 8, 16 leaves):

$$
\int\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{2} \mathrm{~d} x
$$

Problem 68: Unable to integrate problem.

$$
\int\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{4} \mathrm{~d} x
$$

Optimal(type 3, 139 leaves, 3 steps):
$384 b^{4} x+48 b^{2} x\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{2}+x\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{4}+\frac{192 b^{3}\left(-d x^{4}+2 x^{2}\right)\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)}{x \sqrt{x^{2} d} \sqrt{x^{2} d-2}}$

$$
+\frac{8 b\left(-d x^{4}+2 x^{2}\right)\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{3}}{x \sqrt{x^{2} d} \sqrt{x^{2} d-2}}
$$

Result(type 8, 16 leaves):

$$
\int\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{4} \mathrm{~d} x
$$

Problem 70: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 176 leaves, 1 step):
$\frac{\operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d+1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)-\sinh \left(\frac{a}{2 b}\right)\right) \sinh \left(\frac{\operatorname{arccosh}\left(x^{2} d+1\right)}{2}\right) \sqrt{2} \sqrt{\pi}}{2 b^{3 / 2} d x}$

$$
-\frac{\operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d+1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)+\sinh \left(\frac{a}{2 b}\right)\right) \sinh \left(\frac{\operatorname{arccosh}\left(x^{2} d+1\right)}{2}\right) \sqrt{2} \sqrt{\pi}}{2 b^{3 / 2} d x}-\frac{\sqrt{x^{2} d} \sqrt{x^{2} d+2}}{b d x \sqrt{a+b \operatorname{arccosh}\left(x^{2} d+1\right)}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 71: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 205 leaves, 2 steps):
$\frac{\operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d+1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)-\sinh \left(\frac{a}{2 b}\right)\right) \sinh \left(\frac{\operatorname{arccosh}\left(x^{2} d+1\right)}{2}\right) \sqrt{2} \sqrt{\pi}}{6 b^{5 / 2} d x}$
$+\frac{\operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d+1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)+\sinh \left(\frac{a}{2 b}\right)\right) \sinh \left(\frac{\operatorname{arccosh}\left(x^{2} d+1\right)}{2}\right) \sqrt{2} \sqrt{\pi}}{6 b^{5 / 2} d x}$
$+\frac{-d x^{4}-2 x^{2}}{3 b x\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{3 / 2} \sqrt{x^{2} d} \sqrt{x^{2} d+2}}-\frac{x}{3 b^{2} \sqrt{a+b \operatorname{arccosh}\left(x^{2} d+1\right)}}$
Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{arccosh}\left(x^{2} d+1\right)\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 72: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)}} \mathrm{d} x
$$

Optimal (type 4, 135 leaves, 1 step):

$$
\cosh \left(\frac{\operatorname{arccosh}\left(x^{2} d-1\right)}{2}\right) \operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)-\sinh \left(\frac{a}{2 b}\right)\right) \sqrt{2} \sqrt{\pi}
$$

$$
2 d x \sqrt{b}
$$

$$
-\frac{\cosh \left(\frac{\operatorname{arccosh}\left(x^{2} d-1\right)}{2}\right) \operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)+\sinh \left(\frac{a}{2 b}\right)\right) \sqrt{2} \sqrt{\pi}}{2 d x \sqrt{b}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)}} \mathrm{d} x
$$

Problem 73: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 246 leaves, 2 steps):

$$
-\frac{x}{15 b^{2}\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{3 / 2}}+\frac{\cosh \left(\frac{\operatorname{arccosh}\left(x^{2} d-1\right)}{2}\right) \operatorname{erfi}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)-\sinh \left(\frac{a}{2 b}\right)\right) \sqrt{2} \sqrt{\pi}}{30 b^{7 / 2} d x}
$$

$$
+\frac{\cosh \left(\frac{\operatorname{arccosh}\left(x^{2} d-1\right)}{2}\right) \operatorname{erf}\left(\frac{\sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)} \sqrt{2}}{2 \sqrt{b}}\right)\left(\cosh \left(\frac{a}{2 b}\right)+\sinh \left(\frac{a}{2 b}\right)\right) \sqrt{2} \sqrt{\pi}}{30 b^{7 / 2} d x}
$$

$$
+\frac{-d x^{4}+2 x^{2}}{5 b x\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{5 / 2} \sqrt{x^{2} d} \sqrt{x^{2} d-2}}-\frac{\sqrt{x^{2} d} \sqrt{x^{2} d-2}}{15 b^{3} d x \sqrt{a+b \operatorname{arccosh}\left(x^{2} d-1\right)}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{arccosh}\left(x^{2} d-1\right)\right)^{7 / 2}} \mathrm{~d} x
$$

Problem 74: Result more than twice size of optimal antiderivative.

$$
\int(b x+a+\sqrt{b x+a-1} \sqrt{b x+a+1}) \mathrm{d} x
$$

Optimal(type 3, 41 leaves, 5 steps):

$$
\frac{(b x+a+\sqrt{b x+a-1} \sqrt{b x+a+1})^{2}}{4 b}-\frac{\operatorname{arccosh}(b x+a)}{2 b}
$$

Result(type 3, 146 leaves):

$$
\frac{b x^{2}}{2}+a x+\frac{\sqrt{b x+a-1}(b x+a+1)^{3 / 2}}{2 b}-\frac{\sqrt{b x+a+1} \sqrt{b x+a-1}}{2 b}
$$

$$
-\frac{\sqrt{(b x+a+1)(b x+a-1)} \ln \left(\frac{\frac{b(1+a)}{2}+\frac{(a-1) b}{2}+b^{2} x}{\sqrt{b^{2}}}+\sqrt{x^{2} b^{2}+(b(1+a)+(a-1) b) x+(1+a)(a-1)}\right)}{2 \sqrt{b x+a+1} \sqrt{b x+a-1} \sqrt{b^{2}}}
$$

Problem 75: Result more than twice size of optimal antiderivative.

$$
\int \frac{b x+a+\sqrt{b x+a-1} \sqrt{b x+a+1}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 114 leaves, 7 steps):

$$
-\frac{a}{2 x^{2}}-\frac{b}{x}-\frac{b^{2} \arctan \left(\frac{\sqrt{1-a} \sqrt{b x+a+1}}{\sqrt{1+a} \sqrt{b x+a-1}}\right)}{\left(-a^{2}+1\right)^{3 / 2}}-\frac{(b x+a+1)^{3 / 2} \sqrt{b x+a-1}}{2(1+a) x^{2}}+\frac{b \sqrt{b x+a-1} \sqrt{b x+a+1}}{2\left(-a^{2}+1\right) x}
$$

Result(type 3, 235 leaves):
$\frac{1}{2 \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}\left(a^{2}-1\right)^{2} x^{2}}\left(\sqrt{b x+a-1} \sqrt{b x+a+1}\left(\sqrt{a^{2}-1} \ln \left(\frac{2\left(a b x+\sqrt{a^{2}-1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}+a^{2}-1\right)}{x}\right) x^{2} b^{2}\right.\right.$
$-x a^{3} b \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}-a^{4} \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} x a b+2 \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} a^{2}$
$\left.\left.-\sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}\right)\right)-\frac{b}{x}-\frac{a}{2 x^{2}}$

Problem 76: Result more than twice size of optimal antiderivative.
$\int \frac{b x+a+\sqrt{b x+a-1} \sqrt{b x+a+1}}{x^{4}} \mathrm{~d} x$
Optimal(type 3, 157 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{a}{3 x^{3}}-\frac{b}{2 x^{2}}+\frac{(b x+a-1)^{3 / 2}(b x+a+1)^{3 / 2}}{3\left(-a^{2}+1\right) x^{3}}-\frac{a b^{3} \arctan \left(\frac{\sqrt{1-a} \sqrt{b x+a+1}}{\sqrt{1+a} \sqrt{b x+a-1}}\right)}{\left(-a^{2}+1\right)^{5 / 2}}-\frac{a b(b x+a+1)^{3 / 2} \sqrt{b x+a-1}}{2(1-a)(1+a)^{2} x^{2}} \\
& \quad+\frac{a b^{2} \sqrt{b x+a-1} \sqrt{b x+a+1}}{2\left(-a^{2}+1\right)^{2} x}
\end{aligned}
$$

Result(type 3, 373 leaves):

$$
\begin{aligned}
& -\frac{1}{6 \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}\left(a^{2}-1\right)^{3} x^{3}}\left(\sqrt { b x + a - 1 } \sqrt { b x + a + 1 } \left(3 \sqrt{a^{2}-1} \ln \left(\frac{2\left(a b x+\sqrt{a^{2}-1} \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}+a^{2}-1\right)}{x}\right) x^{3} a b^{3}\right.\right. \\
& -x^{2} a^{4} b^{2} \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}+x a^{5} b \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}-\sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} x^{2} a^{2} b^{2}+2 a^{6} \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} \\
& -2 x a^{3} b \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}+2 \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} x^{2} b^{2}-6 a^{4} \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}+\sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} x a b \\
& \left.\left.\quad+6 \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1} a^{2}-2 \sqrt{x^{2} b^{2}+2 a b x+a^{2}-1}\right)\right)-\frac{b}{2 x^{2}}-\frac{a}{3 x^{3}}
\end{aligned}
$$

Problem 77: Unable to integrate problem.

$$
\int \mathrm{e}^{\operatorname{arccosh}(b x+a)^{2}} x^{3} \mathrm{~d} x
$$

Optimal(type 4, 265 leaves, 37 steps):
$-\frac{\operatorname{erfi}(-2+\operatorname{arccosh}(b x+a)) \sqrt{\pi}}{32 b^{4} \mathrm{e}^{4}}-\frac{\operatorname{erfi}(-1+\operatorname{arccosh}(b x+a)) \sqrt{\pi}}{16 b^{4} E}-\frac{3 a^{2} \operatorname{erfi}(-1+\operatorname{arccosh}(b x+a)) \sqrt{\pi}}{8 b^{4} E}+\frac{\operatorname{erfi}(1+\operatorname{arccosh}(b x+a)) \sqrt{\pi}}{16 b^{4} E}$
$+\frac{3 a^{2} \operatorname{erfi}(1+\operatorname{arccosh}(b x+a)) \sqrt{\pi}}{8 b^{4} E}+\frac{\operatorname{erfi}(2+\operatorname{arccosh}(b x+a)) \sqrt{\pi}}{32 b^{4} \mathrm{e}^{4}}+\frac{3 a \operatorname{erfi}\left(-\frac{3}{2}+\operatorname{arccosh}(b x+a)\right) \sqrt{\pi}}{16 b^{4} \mathrm{e}^{\frac{9}{4}}}$
$+\frac{3 a \operatorname{erfi}\left(-\frac{1}{2}+\operatorname{arccosh}(b x+a)\right) \sqrt{\pi}}{16 b^{4} \mathrm{e}^{\frac{1}{4}}}+\frac{a^{3} \operatorname{erfi}\left(-\frac{1}{2}+\operatorname{arccosh}(b x+a)\right) \sqrt{\pi}}{4 b^{4} \mathrm{e}^{\frac{1}{4}}}-\frac{3 a \operatorname{erfi}\left(\frac{1}{2}+\operatorname{arccosh}(b x+a)\right) \sqrt{\pi}}{16 b^{4} \mathrm{e}^{\frac{1}{4}}}$
$-\frac{a^{3} \operatorname{erfi}\left(\frac{1}{2}+\operatorname{arccosh}(b x+a)\right) \sqrt{\pi}}{4 b^{4} \mathrm{e}^{\frac{1}{4}}}-\frac{3 a \operatorname{erfi}\left(\frac{3}{2}+\operatorname{arccosh}(b x+a)\right) \sqrt{\pi}}{16 b^{4} \mathrm{e}^{\frac{9}{4}}}$
Result(type 8, 15 leaves):

$$
\int \mathrm{e}^{\operatorname{arccosh}(b x+a)^{2}} x^{3} \mathrm{~d} x
$$

Problem 79: Unable to integrate problem.

$$
\int \frac{\operatorname{arccosh}\left(\sqrt{b x^{2}+1}\right)^{n}}{\sqrt{b x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 2 steps):

$$
\frac{\operatorname{arccosh}\left(\sqrt{b x^{2}+1}\right)^{1+n} \sqrt{-1+\sqrt{b x^{2}+1}} \sqrt{1+\sqrt{b x^{2}+1}}}{b(1+n) x}
$$

Result(type 8, 24 leaves):

$$
\int \frac{\operatorname{arccosh}\left(\sqrt{b x^{2}+1}\right)^{n}}{\sqrt{b x^{2}+1}} \mathrm{~d} x
$$

Summary of Integration Test Results
279 integration problems

A - 159 optimal antiderivatives
B - 55 more than twice size of optimal antiderivatives
C - 1 unnecessarily complex antiderivatives
D - 64 unable to integrate problems
E - O integration timeouts

[^0]: Problem 86: Result more than twice size of optimal antiderivative.

